Abstract
Bone marrow cell liquid cultures were incubated at various oxygen concentrations ranging from 0% to 18% (air). The total number of cells in culture (CT) at the end of a 6-day incubation was found to be directly proportional to the oxygen concentration. As compared with air- incubated controls, cells recovered from severely hypoxic (1% oxygen) day-5 liquid cultures showed (1) the same day-7 colony-formation efficiency in semisolid culture (neutrophilic/monocytic colonies) or in spleen; (2) a higher day-14 spleen colony-formation efficiency; (3) an enhanced radio-protection ability; and (4) an increased marrow repopulation ability, as measured by determining either total cell number in recipient marrow MRAcell, or the capacity of the latter of generating day-7 neutrophilic/monocytic colonies in secondary in vitro assays (MRACFU-NM). Taking into account CT, the absolute numbers of progenitors in culture were also computed. The results showed that, with respect to time 0, incubation in air produced an increase in the number of day-7 CFUs and a decrease in the number of the other progenitors, whereas in hypoxic cultures all types of progenitors decreased. However, as compared with air-incubated controls, all progenitors, except cells sustaining MRACFU-NM, were reduced in hypoxic cultures. The degree of reduction paralleled the position of the progenitor in the hematopoietic hierarchy, being maximum for day-7 CFUs and null for cells sustaining MRACFU-NM, which, in fact, were better preserved in hypoxic cultures.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal