Table 2.

Emerging TPD technologies

TPD TechnologyDescriptionUtilityConsiderationsReferences
AbTACs Use bispecifc antibodies to engage target membrane proteins and trigger internalization and degradation Enable targeting of membrane proteins (eg, PD1; beyond capability of orthodox PROTACs) Require cell surface E3 ligases such as ZNRF3 and RNF43 132  
Oligonucleotide-based PROTACs Use oligonucleotide motifs as PROTAC warhead
Various oligonucleotide formats: single- or double-stranded DNA, RNA, or G-quadruplexes 
Enable targeting of TFs and RNA-binding proteins via their nucleic acid–binding domains Compared to orthodox PROTACs, greater challenges with cell permeability and target cell access 133,134  
Multitargeted PROTACs Target multiple proteins simultaneously via 1 molecular construct Tractable multiplexed targeting Increases complexity of E3 ligase selection
Likely increased risk of nontarget neosubtrate degradation, risk of off-target toxicity 
135  
BioPROTACs Engineered fusion proteins, E3 ligase substrate recognition domain modified to express target-specific peptide or protein Dispenses with warhead identification and ternary complex optimization; can be delivered as mRNA Unable to be administered orally; delivery is challenging 136-140  
Pre-PROTACs PROTACs that are only activated by specific stimuli or contexts. Examples: light activated, radiograph activated, and hypoxia or ROS triggers Improve spatiotemporal and cellular contextual control of PROTAC activity; thus, reduce dose requirements, reduced toxicity Alternative physical, chemical, or electromagnetic stimuli could be used if suitable sensor moieties are identified 141-147  
MGs Induce colocalization of target protein and E3 ligase. Example: lenalidomide and pomalidomide. Smaller molecular size than conventional PROTACs but superior PK Limited design flexibility 148-150  
Lysosome-mediated TPD
LYTACs
AUTACs
ATTECs
AUTOTACs
MoDE-As 
Leverage lysosomal non-UPS protein cycling cellular processes: (1) autophagy-lysosomal system degrades cytoplasmic proteins, protein aggregates, and organelles; (2) endosome–lysosomal pathway that degrades extracellular proteins Expands the range of protein, protein structures, and other biomolecules targetable with TPD therapeutics beyond those subject to the UPS Early in development 151-153  
TPD TechnologyDescriptionUtilityConsiderationsReferences
AbTACs Use bispecifc antibodies to engage target membrane proteins and trigger internalization and degradation Enable targeting of membrane proteins (eg, PD1; beyond capability of orthodox PROTACs) Require cell surface E3 ligases such as ZNRF3 and RNF43 132  
Oligonucleotide-based PROTACs Use oligonucleotide motifs as PROTAC warhead
Various oligonucleotide formats: single- or double-stranded DNA, RNA, or G-quadruplexes 
Enable targeting of TFs and RNA-binding proteins via their nucleic acid–binding domains Compared to orthodox PROTACs, greater challenges with cell permeability and target cell access 133,134  
Multitargeted PROTACs Target multiple proteins simultaneously via 1 molecular construct Tractable multiplexed targeting Increases complexity of E3 ligase selection
Likely increased risk of nontarget neosubtrate degradation, risk of off-target toxicity 
135  
BioPROTACs Engineered fusion proteins, E3 ligase substrate recognition domain modified to express target-specific peptide or protein Dispenses with warhead identification and ternary complex optimization; can be delivered as mRNA Unable to be administered orally; delivery is challenging 136-140  
Pre-PROTACs PROTACs that are only activated by specific stimuli or contexts. Examples: light activated, radiograph activated, and hypoxia or ROS triggers Improve spatiotemporal and cellular contextual control of PROTAC activity; thus, reduce dose requirements, reduced toxicity Alternative physical, chemical, or electromagnetic stimuli could be used if suitable sensor moieties are identified 141-147  
MGs Induce colocalization of target protein and E3 ligase. Example: lenalidomide and pomalidomide. Smaller molecular size than conventional PROTACs but superior PK Limited design flexibility 148-150  
Lysosome-mediated TPD
LYTACs
AUTACs
ATTECs
AUTOTACs
MoDE-As 
Leverage lysosomal non-UPS protein cycling cellular processes: (1) autophagy-lysosomal system degrades cytoplasmic proteins, protein aggregates, and organelles; (2) endosome–lysosomal pathway that degrades extracellular proteins Expands the range of protein, protein structures, and other biomolecules targetable with TPD therapeutics beyond those subject to the UPS Early in development 151-153  

ATTECs, autophagosome tethering compounds; AUTACs, autophagy-targeting chimeras; AUTOTACs, autophagy-targeting chimeras; LYTACs, lysosome-targeting chimeras; MoDE-As, molecular degraders of extracellular proteins through the asialoglycoprotein receptor; mRNA, messenger RNA; PD1, programmed cell death protein 1; ROS, reactive oxygen species; TPD, targeted protein degradation.

Close Modal

or Create an Account

Close Modal
Close Modal