Table 2.

Results from scenario analyses (LYs gained)

Scenario number and descriptionRationalePer patientUS population
Base case  3.20 18 875 
Probability of infusion not affected by V2VT In this scenario, V2VT only impacts postinfusion survival (ie, not the proportion of patients that receive an infusion). 1.98 11 706 
Postinfusion survival not affected by V2VT (Bachy et al9In this scenario, postinfusion survival is informed by Bachy et al9 which does not differentiate survival by V2VT. 0.82 4826 
Switch non-infused survival source (Kuhnl et al8As above, except using an alternative source for postinfusion survival: Kuhnl et al9  3.19 18 832 
Switch HR cutoffs (<28 d vs 28-40 d vs ≥40 d) In the base-case analysis, HR cutoffs of <36 and ≥36 d were used, as a simple means to dichotomize the Locke et al6 cohort in terms of their survival experience linked to V2VT. In this scenario, alternative cutoffs are used, which breaks the cohort into 3 groups instead of 2. 3.47 20 500 
Change long V2VT to be 37 d Alternative long V2VT specified to reflect a smaller reduction for the short V2VT group. 2.46 14 526 
Change short V2VT to be 30 d Alternative short V2VT specified to reflect a smaller reduction from the long V2VT group. 2.82 16 661 
Assume half of the US population Sensitivity of the population results stress-tested by assuming half of the estimated eligible cohort. 3.20 9438 
Assume CIBMT registry population of 1294 patients Sensitivity of the population results stress-tested by assuming same population per latest data from CIBMT registry. 3.20 4138 
Postinfusion survival model: lognormal  1.82 10 761 
10 1 knot(s) normal spline  2.34 13 801 
11 MCM: Weibull Choice of an alternative survival extrapolation for patients that receive CAR T. 3.53 20 813 
12 MCM: log-logistic  3.29 19 435 
13 Non-infused survival model Choice of an alternative survival extrapolation for patients that do not receive CAR T. 3.20 18 861 
14 Log-logistic  3.20 18 865 
15 1 knot(s) odds spline  3.06 18 042 
16 MCM: lognormal
MCM: log-logistic 
 3.06 18 067 
17 V2VT regression model: Choice of an alternative regression model for estimating the proportion of patients who were infused, based on V2VT. 3.14 18 529 
18 weighted-linear  3.07 18 102 
19 logistic  2.68 15 802 
20 method of moments
Expectation maximization algorithm 
 2.44 14 420 
21 Iterative V2VT sampling In the base-case analysis, all patients were assumed to have the same V2VT. In this scenario, V2VT is sampled from a distribution, with the mean results taken. Further details of this approach are provided in a supplemental Appendix. 2.79 16 475 
Scenario number and descriptionRationalePer patientUS population
Base case  3.20 18 875 
Probability of infusion not affected by V2VT In this scenario, V2VT only impacts postinfusion survival (ie, not the proportion of patients that receive an infusion). 1.98 11 706 
Postinfusion survival not affected by V2VT (Bachy et al9In this scenario, postinfusion survival is informed by Bachy et al9 which does not differentiate survival by V2VT. 0.82 4826 
Switch non-infused survival source (Kuhnl et al8As above, except using an alternative source for postinfusion survival: Kuhnl et al9  3.19 18 832 
Switch HR cutoffs (<28 d vs 28-40 d vs ≥40 d) In the base-case analysis, HR cutoffs of <36 and ≥36 d were used, as a simple means to dichotomize the Locke et al6 cohort in terms of their survival experience linked to V2VT. In this scenario, alternative cutoffs are used, which breaks the cohort into 3 groups instead of 2. 3.47 20 500 
Change long V2VT to be 37 d Alternative long V2VT specified to reflect a smaller reduction for the short V2VT group. 2.46 14 526 
Change short V2VT to be 30 d Alternative short V2VT specified to reflect a smaller reduction from the long V2VT group. 2.82 16 661 
Assume half of the US population Sensitivity of the population results stress-tested by assuming half of the estimated eligible cohort. 3.20 9438 
Assume CIBMT registry population of 1294 patients Sensitivity of the population results stress-tested by assuming same population per latest data from CIBMT registry. 3.20 4138 
Postinfusion survival model: lognormal  1.82 10 761 
10 1 knot(s) normal spline  2.34 13 801 
11 MCM: Weibull Choice of an alternative survival extrapolation for patients that receive CAR T. 3.53 20 813 
12 MCM: log-logistic  3.29 19 435 
13 Non-infused survival model Choice of an alternative survival extrapolation for patients that do not receive CAR T. 3.20 18 861 
14 Log-logistic  3.20 18 865 
15 1 knot(s) odds spline  3.06 18 042 
16 MCM: lognormal
MCM: log-logistic 
 3.06 18 067 
17 V2VT regression model: Choice of an alternative regression model for estimating the proportion of patients who were infused, based on V2VT. 3.14 18 529 
18 weighted-linear  3.07 18 102 
19 logistic  2.68 15 802 
20 method of moments
Expectation maximization algorithm 
 2.44 14 420 
21 Iterative V2VT sampling In the base-case analysis, all patients were assumed to have the same V2VT. In this scenario, V2VT is sampled from a distribution, with the mean results taken. Further details of this approach are provided in a supplemental Appendix. 2.79 16 475 

CIBMT, Center for International Blood and Marrow Transplant Research; HR, hazard ratio.

Close Modal

or Create an Account

Close Modal
Close Modal