Reaction equations, rate laws, and kinetic parameters comprising the platelet model
Reaction/quantity . | Mechanism . | Rate law/rule . | Parameter values . | Reference* . |
---|---|---|---|---|
SERCA shuttling | SERCAE2 ⇆ SERCAE1 | k1 · [SERCAE2] − k−1 · [SERCAE1] | k1 = 600 s−1, k−1 = 600 s−1 | 1 |
Ca2+cyt binding SERCA | SERCAE1 + 2 Ca2+cyt ⇆ SERCAE1·Ca2+2 | k1 · [SERCAE1] · [Ca2+cyt] · [Ca2+cyt] − k−1 · [SERCAE1·Ca2+2] | k1 = 1 × 1015 M−2·s−1, k−1 = 10 s−1 | 1 |
Phosphorylation of SERCA | SERCAE1·Ca2+ ⇆ SERCAE1P·Ca2+ | k1 · [SERCAE1Ca2+] − k-1 · [SERCAE1P·Ca2+] | k1 = 700 s−1, k−1 = 5 s−1 | 1 |
Ca2+ transport across IM | SERCAE1P·Ca2+ ⇆ SERCAE2P·Ca2+ | k1 · [SERCAE1P·Ca2+] − k-1 · [SERCAE2P·Ca2+] | k1 = 600 s−1, k−1 = 50 s−1 | 1 |
Ca2+dts release into DTS | SERCAE2P·Ca2+2 ⇆ SERCAE2P + 2 Ca2+dts | k1 · [SERCAE2P·Ca2+2] − k-1 · [SERCAE2P] · [Ca2+dts] · [Ca2+dts] | k1 = 1000 s−1, k−1 = 4 × 109 M−2·s−1 | 1 |
SERCA dephosphorylation | SERCAE2P ⇆ SERCAE2 | k1 · [SERCAE2P] − k-1 · [SERCAE2] | k1 = 500 s−1, k−1 = 1 s−1 | 1 |
IP3R inhibition | IP3Rn + Ca2+cyt ⇆ IP3Ri1 | [IP3Rn] · ((k1 · L1 + l2) · [Ca2+cyt] / (L1 + [Ca2+cyt] · (1 + L1 / L3))) − [IP3Ri1] · (k−1 + l−2) | k1 = 0.64 s−1·μM−1, L1 = 0.12 μM, l2 = 1.7 s−1, L3 = 0.025 μM, k−1 = 0.04 s−1, l−2 = 0.8 s−1 | 2 |
IP3R binding IP3 | IP3Rn + IP3 ⇆ IP3Ro | [IP3Rn] · [IP3] · ((k2 · L3 + l4 · [Ca2+cyt]) / (L3 + [Ca2+cyt] · (1 + L3 / L1))) − [IP3Ro] · ((k−2 + l-4 · [Ca2+cyt]) / (1 + [Ca2+cyt] / L5)) | k2 = 37.4 s−1·μM−1, l4 = 1.7 s−1·μM−1, k−2 = 1.4 s−1, l-4 = 2.5 μM−1·s−1, L5 = 54.7 μM | 2 |
IP3R activation | IP3Ro + Ca2+cyt ⇆ IP3Ra | [IP3Ro] · ((k4 · L5 + l6) · [Ca2+cyt] / (L5 + [Ca2+cyt])) − [IP3Ra] · (L1 · (k-4 + l-6) / (L1 + [Ca2+cyt])) | k4 = 4 s−1·μM−1, L5 = 54.7 μM, l6 = 4707 s−1, L1 = 0.12 μM, k-4 = 0.54 s−1·μM−1, l-6 = 11.4 s−1 | 2 |
IP3R inhibition | IP3Ra + Ca2+cyt ⇆ IP3Ri2 | [IP3Ra] · (k1 · L1 + l2) · [Ca2+cyt] / (L1 + [Ca2+cyt]) − [IP3Ri2] · (k−1 + l−2) | k1 = 0.64 s−1·μM−1, L1 = 0.12 μM, l2 = 1.7 s−1, k−1 = 0.04 s−1, l−2 = 0.8 s−1 | 2 |
IP3R closing | IP3Ro ⇆ IP3Rs | [IP3Ro] · (k3 · L5 / (L5 + [Ca2+cyt])) − [IP3Rs] · k-3 | k3 = 11 s−1·μM−1, L5 = 54.7 μM, k-3 = 29.8 s−1 | 2 |
Channel open probability (Po) | (0.9 · IP3Ra / IP3Rtotal + 0.1 · pIP3Ro / IP3Rtotal)4 | 2 | ||
IM potential (ψIM) | RT / zF · ln (Ca2+dts / Ca2+cyt) | † | ||
PM potential (ψPM) | RT / zF · ln (Ca2+prp / Ca2+cyt) | † | ||
Ca2+ release from DTS | Ca2+dts ⇆ Ca2+cyt | NIP3R · Po · γIP3R · e · ψIM | γIP3R = 10 pS | 3† |
Ca2+ leak across PM | Ca2+prp ⇆ Ca2+cyt | SAPM · γleak · ψPM | γleak = 0.7 pS·m−2 | |
PLC-β* binding PI | PLC-β* + PI ⇆ PLC-β*·PI | k1 · [PLC-β*] · [PI] − k−1 · [PLC-β*·PI] | k1 = 1 × 108 s−1·M−1, k−1 = 70499 s−1 | 4 |
PLC-β* hydrolyzing PI | PI → DAG + I1P | kcat · [PLC-β*·PI] | kcat = 1.43 s−1 | 4 |
PLC-β* binding PIP | PLC-β* + PIP ⇆ PLC-β*·PIP | k1 · [PLC-β*] · [PIP] − k−1 · [PLC-β*·PIP] | k1 = 1 × 108 s−1·M−1, k−1 = 19000 s−1 | 4 |
PLC-β* hydrolyzing PIP | PIP → DAG + IP2 | kcat · [PLC-β*·PIP] | kcat = 0.35 s−1 | 4 |
PLC-β* binding PIP2 | PLC-β* + PIP2 ⇆ PLC-β*·PIP2 | k1 · [PLC-β*] · [PIP2] − k−1 · [PLC-β*·PIP2] | k1 = 1 × 108 s−1·M−1, k−1 = 49990 s−1 | 4 |
PLC-β* hydrolyzing PIP2 | PIP2 → DAG + IP3 | kcat · [PLC-β*·PIP2] | kcat = 9.8505 s−1 | 4 |
Phosphorylation of PI | PI → PIP | kcat · [PIK] · [PI] / (KM + [PI]) | KM = 0.016 mM−1, kcat = 2.77 s−1 | 5 |
Phosphorylation of PIP | PIP → PIP2 | kcat · [PIPK] · [PIP] / (KM + [PIP]) | KM = 0.01 mM−1, kcat = 1.021 s−1 | 6 |
Dephosphorylation of PIP2 | PIP2 → PIP | kcat · [PIP2P] · [PIP2] / (KM + [PIP2]) | KM = 250 μM−1, kcat = 1 s−1 | 7 |
Dephosphorylation of I1P | I1P → I | kcat · [IPP] · [I1P] / (KM + [I1P]) | KM = 0.12 mM−1, kcat = 1 s−1 | 8 |
Dephosphorylation of I4P | I4P → I | kcat · [IPP] · [I4P] / (KM + [I4P]) | KM = 0.12 mM−1, kcat = 1 s−1 | 8 |
Dephosphorylation of IP2 | IP2 → I4P | kcat · [IP2P] · [IP2] / (KM + [IP2]) | KM = 0.9 μM−1, kcat = 0.05 s−1 | 9 |
Dephosphorylation of IP3 | IP3 → IP2 | kcat · [IP3P] · [IP3] / (KM + [IP3]) | KM = 24 μM−1, kcat = 31 s−1 | 10 |
Phosphorylation of DAG | DAG → PA | kcat · [DGK] · [DAG] / (KM + [DAG]) | KM = 0.25 mM−1, kcat = 0.26 s−1 | 11 |
Synthesis of CDPDG | CTP + PA → CDPDG | kcat · [CDS] · [PA] · [CTP] / (KM1 · KM2 + (KM1 · [PA] + KM2 · [CTP] + [PA] · [CTP])) | KM1 = 0.5 mM−1, KM2 = 1.0 mM−1, kcat = 8.9 s−1 | 12 |
Synthesis of PI | CDPDG + I → PI | kcat · [PIS] · [CDPDG] · [I] / (KM1 · KM2 + (KM1 · [I] + KM2 · [CDPDG] + [I] · [CDPDG])) | KM1 = 13 μM−1, KM2 = 0.28 mM−1, kcat = 13.6 s−1 | 13 |
Activation of PKC | PKC ⇆ PKCa | k1 · [PKC] − k−1 · [PKCa] | k1 = 1 s−1, k−1 = 2 s−1 | 14 |
Activation of PKC·Ca2+cyt | PKC·Ca2+cyt ⇆ PKCa·Ca2+cyt | k1 · [PKC·Ca2+cyt] − k−1 · [PKCa·Ca2+cyt] | k1 = 1.3 s−1, k−1 = 3.5 s−1 | 14 |
Activation of PKC·Ca2+cyt ·DG | PKC·Ca2+cyt ·DAG ⇆ PKCa·Ca2+cyt ·DAG | k1 · [PKC·Ca2+cyt ·DAG] − k−1 · [PKCa·Ca2+cyt ·DAG] | k1 = 1 s−1, k−1 = 0.1 s−1 | 14 |
PKC binding Ca2+cyt | PKC + Ca2+cyt ⇆ PKC·Ca2+cyt | kon · [PKC] · [Ca2+cyt] − koff · [PKC·Ca2+cyt] | kon = 0.6 × 106 M−1·s−1, koff = 0.5 s−1 | 14 |
PKC·Ca2+cyt binding DAG | PKC·Ca2+cyt + DAG ⇆ PKC·Ca2+cyt ·DAG | kon · [PKC·Ca2+cyt] · [DAG] − koff · [PKC·Ca2+cyt ·DAG] | kon = 8 × 103 M−1·s−1, koff = 8.6348 s−1 | 14 |
PKCa binding Ca2+cyt | PKCa + Ca2+cyt ⇆ PKCa·Ca2+cyt | kon · [PKCa] · [Ca2+cyt] − koff · [PKCa·Ca2+cyt] | kon = 0.6 × 106 M−1·s−1, koff = 0.5 s−1 | 14 |
PKCa·Ca2+cyt binding DAG | PKCa·Ca2+cyt + DAG ⇆ PKCa·Ca2+cyt ·DAG | kon · [PKCa·Ca2+cyt] · [DAG] − koff · [PKCa·Ca2+cyt ·DAG] | kon = 8 × 103 M−1·s−1, koff = 8.6348 s−1 | 14 |
Activation of P2Y1 | P2Y1 ⇆ P2Y1* | k1 · [P2Y1] − (k1 / Kact) · [P2Y1*] | k1 = 7.9 s−1, Kact = 0.0001 | 15, 16† |
Activation of P2Y1·ADP | P2Y1·ADP ⇆ P2Y1*·ADP | αk1 · [P2Y1·ADP] − (k1 / Kact) · [P2Y1*·ADP] | α = 3.35, k1 = 7.9 s−1, Kact = 0.0001 | 15, 16† |
Activation of P2Y1·Gq·GDP | P2Y1·Gq·GDP ⇆ P2Y1*·Gq·GDP | βk1 · [P2Y1·Gq·GDP] − (k1 / Kact) · [P2Y1*·Gq·GDP] | β = 6.62, k1 = 7.9 s−1, Kact = 0.0001 | 15, 16† |
Activation of P2Y1·ADP·Gq·GDP | P2Y1·ADP·Gq·GDP ⇆ P2Y1*·ADP·Gq·GDP | αβδk1 · [P2Y1·ADP·Gq·GDP] − (k1 / Kact) · [P2Y1*·ADP·Gq·GDP] | α = 3.35, β = 6.62, δ = 9.85, k1 = 7.9 s−1, Kact = 0.0001 | 15, 16† |
P2Y1* binding Gq·GDP | P2Y1* + Gq·GDP ⇆ P2Y1*·Gq·GDP | βk11 · [P2Y1*] · [Gq·GDP] − (k11 / Kg) · [P2Y1*·Gq·GDP] | β = 6.62, k11 = 0.59 μM−1·s−1, Kq = 0.032 μM−1 | 15, 16† |
P2Y1*·ADP binding Gq·GDP | P2Y1*·ADP + Gq·GDP ⇆ P2Y1*·ADP·Gq·GDP | βk11 · [P2Y1*·ADP] · [Gq·GDP] − (k11 / (δγKg)) · [P2Y1*·Gq·GDP] | β = 6.62, k11 = 0.59 μM−1·s−1, δ = 9.85, γ = 9.39, Kq = 0.032 μM−1 | 15, 16† |
P2Y1 binding ADP | P2Y1 + ADP ⇆ P2Y1·ADP | k3 · [P2Y1] · [ADP] − (Kdk3) · [P2Y1·ADP] | k3 = 9.6 × 107 M−1·s−1, Kd = 99 nM | 15, 16† |
P2Y1·Gq·GDP binding ADP | P2Y1·Gq·GDP + ADP ⇆ P2Y1·ADP·Gq·GDP | k3 · [P2Y1·Gq·GDP] · [ADP] - (Kdk3 / γ) · [P2Y1·ADP·Gq·GDP] | k3 = 9.6 × 107 M−1·s−1, Kd = 99 nM, γ = 9.39 | 15, 16† |
P2Y1* binding ADP | P2Y1* + ADP ⇆ P2Y1*·ADP | αk3 · [P2Y1*] · [ADP] − Kdk3 · [P2Y1*·ADP] | α = 3.35, k3 = 9.6 × 107 M−1·s−1, Kd = 99 nM | 15, 16† |
P2Y1*·Gq·GDP binding ADP | P2Y1*·Gq·GDP + ADP ⇆ P2Y1*·ADP·Gq·GDP | αk3 · [P2Y1*·Gq·GDP] · [ADP] − (Kdk3 / δγ) · [P2Y1*·ADP·Gq·GDP] | α = 3.35, k3 = 9.6 × 107 M−1·s−1, Kd = 99 nM, δ = 9.85, γ = 9.39 | 15, 16† |
P2Y1*·Gq·GDP releasing GDP | P2Y1*·Gq·GDP ⇆ P2Y1*·Gq | k1 · [P2Y1*·Gq·GDP] − k−1 · [P2Y1*·Gq] · [GDP] | k1 = 17.8 s−1, k−1 = 1 × 106 M−1·s−1 | 15, 16† |
P2Y1*·Gq binding GTP | P2Y1*·Gq ⇆ P2Y1*·Gq·GTP | k1 · [P2Y1*·Gq] · [GTP] − k−1 · [P2Y1*·Gq·GTP] | k1 = 1 × 105 M−1·s−1, k−1 = 8 s−1 | 15, 16† |
P2Y1*·ADP·Gq·GDP releasing GDP | P2Y1*·ADP·Gq·GDP ⇆ P2Y1*·ADP·Gq | k1 · [P2Y1*·ADP·Gq·GDP] − k−1 · [P2Y1*·ADP·Gq] · [GDP] | k1 = 17.8 s−1, k−1 = 1 × 106 M−1·s−1 | 15, 16† |
P2Y1*·ADP·Gq binding GTP | P2Y1*·ADP·Gq ⇆ P2Y1*·ADP·Gq·GTP | k1 · [P2Y1*·ADP·Gq] · [GTP] − k−1 · [P2Y1*·ADP·Gq·GTP] | k1 = 1 × 105 M−1·s−1, k−1 = 8 s−1 | 15, 16† |
P2Y1*·Gq·GTP releasing Gq·GTP | P2Y1*·Gq·GTP ⇆ P2Y1* + Gq·GTP | k1 · [P2Y1*·Gq·GTP] − k−1 · [P2Y1*] · [Gq·GTP] | k1 = 850 s−1, k−1 = 1 × 107 M−1·s−1 | 15, 16† |
P2Y1*·ADP·Gq·GTP releasing Gq·GTP | P2Y1*·ADP·Gq·GTP ⇆ P2Y1*·ADP + Gq·GTP | k1 · [P2Y1*·ADP·Gq·GTP] − k−1 · [P2Y1*·ADP] · [Gq·GTP] | k1 = 850 s−1, k−1 = 1 × 107 M−1·s−1 | 15, 16† |
Gq·GTP autohydrolysis | Gq·GTP ⇆ Gα·GDP + Gβγ | kGTP · [Gq·GTP] | kGTP = 0.013 s−1 | 17 |
Activated Gq subunit association | Gα·GTP + Gβγ ⇆ Gq·GTP | k1 · [Gα·GTP] · [Gβγ] − k−1 · [Gq·GTP] | k1 = 0.10 μM−1·s−1, k−1 = 7.78 s−1 | 15 |
Unactivated Gq subunit association | Gα·GDP + Gβγ ⇆ Gq·GDP | k1 · [Gα·GDP] · [Gβγ] − k−1 · [Gq·GDP] | k1 = 0.10 μM−1·s−1, k−1 = 7.78 s−1 | 15 |
PLC-β binding Gq·GTP | PLC-β + Gq·GTP ⇆ PLC-β*·Gq·GTP | k1 · [PLC-β] · [Gq·GTP] − k−1 · [PLC-β*·Gq·GTP] | k1 = 1.61 μM−1·s−1, k−1 = 0.19 s−1 | 15, 16† |
PLC-β* hydrolyzing Gq·GTP | PLC-β*·Gq·GTP → PLC-β·Gq·GDP | kcat · [PLC-β*·Gq·GTP] | kcat = 25 s−1 | 17 |
PLC-β releasing Gq·GDP | PLC-β·Gq·GDP ⇆ PLC-β + Gq·GDP | k1 · [PLC·Gq·GDP] − k−1 · [PLC-β] · [Gq·GDP] | k1 = 1 × 105 s−1, k−1 = 100 M−1·s−1 | 15, 16† |
Reaction/quantity . | Mechanism . | Rate law/rule . | Parameter values . | Reference* . |
---|---|---|---|---|
SERCA shuttling | SERCAE2 ⇆ SERCAE1 | k1 · [SERCAE2] − k−1 · [SERCAE1] | k1 = 600 s−1, k−1 = 600 s−1 | 1 |
Ca2+cyt binding SERCA | SERCAE1 + 2 Ca2+cyt ⇆ SERCAE1·Ca2+2 | k1 · [SERCAE1] · [Ca2+cyt] · [Ca2+cyt] − k−1 · [SERCAE1·Ca2+2] | k1 = 1 × 1015 M−2·s−1, k−1 = 10 s−1 | 1 |
Phosphorylation of SERCA | SERCAE1·Ca2+ ⇆ SERCAE1P·Ca2+ | k1 · [SERCAE1Ca2+] − k-1 · [SERCAE1P·Ca2+] | k1 = 700 s−1, k−1 = 5 s−1 | 1 |
Ca2+ transport across IM | SERCAE1P·Ca2+ ⇆ SERCAE2P·Ca2+ | k1 · [SERCAE1P·Ca2+] − k-1 · [SERCAE2P·Ca2+] | k1 = 600 s−1, k−1 = 50 s−1 | 1 |
Ca2+dts release into DTS | SERCAE2P·Ca2+2 ⇆ SERCAE2P + 2 Ca2+dts | k1 · [SERCAE2P·Ca2+2] − k-1 · [SERCAE2P] · [Ca2+dts] · [Ca2+dts] | k1 = 1000 s−1, k−1 = 4 × 109 M−2·s−1 | 1 |
SERCA dephosphorylation | SERCAE2P ⇆ SERCAE2 | k1 · [SERCAE2P] − k-1 · [SERCAE2] | k1 = 500 s−1, k−1 = 1 s−1 | 1 |
IP3R inhibition | IP3Rn + Ca2+cyt ⇆ IP3Ri1 | [IP3Rn] · ((k1 · L1 + l2) · [Ca2+cyt] / (L1 + [Ca2+cyt] · (1 + L1 / L3))) − [IP3Ri1] · (k−1 + l−2) | k1 = 0.64 s−1·μM−1, L1 = 0.12 μM, l2 = 1.7 s−1, L3 = 0.025 μM, k−1 = 0.04 s−1, l−2 = 0.8 s−1 | 2 |
IP3R binding IP3 | IP3Rn + IP3 ⇆ IP3Ro | [IP3Rn] · [IP3] · ((k2 · L3 + l4 · [Ca2+cyt]) / (L3 + [Ca2+cyt] · (1 + L3 / L1))) − [IP3Ro] · ((k−2 + l-4 · [Ca2+cyt]) / (1 + [Ca2+cyt] / L5)) | k2 = 37.4 s−1·μM−1, l4 = 1.7 s−1·μM−1, k−2 = 1.4 s−1, l-4 = 2.5 μM−1·s−1, L5 = 54.7 μM | 2 |
IP3R activation | IP3Ro + Ca2+cyt ⇆ IP3Ra | [IP3Ro] · ((k4 · L5 + l6) · [Ca2+cyt] / (L5 + [Ca2+cyt])) − [IP3Ra] · (L1 · (k-4 + l-6) / (L1 + [Ca2+cyt])) | k4 = 4 s−1·μM−1, L5 = 54.7 μM, l6 = 4707 s−1, L1 = 0.12 μM, k-4 = 0.54 s−1·μM−1, l-6 = 11.4 s−1 | 2 |
IP3R inhibition | IP3Ra + Ca2+cyt ⇆ IP3Ri2 | [IP3Ra] · (k1 · L1 + l2) · [Ca2+cyt] / (L1 + [Ca2+cyt]) − [IP3Ri2] · (k−1 + l−2) | k1 = 0.64 s−1·μM−1, L1 = 0.12 μM, l2 = 1.7 s−1, k−1 = 0.04 s−1, l−2 = 0.8 s−1 | 2 |
IP3R closing | IP3Ro ⇆ IP3Rs | [IP3Ro] · (k3 · L5 / (L5 + [Ca2+cyt])) − [IP3Rs] · k-3 | k3 = 11 s−1·μM−1, L5 = 54.7 μM, k-3 = 29.8 s−1 | 2 |
Channel open probability (Po) | (0.9 · IP3Ra / IP3Rtotal + 0.1 · pIP3Ro / IP3Rtotal)4 | 2 | ||
IM potential (ψIM) | RT / zF · ln (Ca2+dts / Ca2+cyt) | † | ||
PM potential (ψPM) | RT / zF · ln (Ca2+prp / Ca2+cyt) | † | ||
Ca2+ release from DTS | Ca2+dts ⇆ Ca2+cyt | NIP3R · Po · γIP3R · e · ψIM | γIP3R = 10 pS | 3† |
Ca2+ leak across PM | Ca2+prp ⇆ Ca2+cyt | SAPM · γleak · ψPM | γleak = 0.7 pS·m−2 | |
PLC-β* binding PI | PLC-β* + PI ⇆ PLC-β*·PI | k1 · [PLC-β*] · [PI] − k−1 · [PLC-β*·PI] | k1 = 1 × 108 s−1·M−1, k−1 = 70499 s−1 | 4 |
PLC-β* hydrolyzing PI | PI → DAG + I1P | kcat · [PLC-β*·PI] | kcat = 1.43 s−1 | 4 |
PLC-β* binding PIP | PLC-β* + PIP ⇆ PLC-β*·PIP | k1 · [PLC-β*] · [PIP] − k−1 · [PLC-β*·PIP] | k1 = 1 × 108 s−1·M−1, k−1 = 19000 s−1 | 4 |
PLC-β* hydrolyzing PIP | PIP → DAG + IP2 | kcat · [PLC-β*·PIP] | kcat = 0.35 s−1 | 4 |
PLC-β* binding PIP2 | PLC-β* + PIP2 ⇆ PLC-β*·PIP2 | k1 · [PLC-β*] · [PIP2] − k−1 · [PLC-β*·PIP2] | k1 = 1 × 108 s−1·M−1, k−1 = 49990 s−1 | 4 |
PLC-β* hydrolyzing PIP2 | PIP2 → DAG + IP3 | kcat · [PLC-β*·PIP2] | kcat = 9.8505 s−1 | 4 |
Phosphorylation of PI | PI → PIP | kcat · [PIK] · [PI] / (KM + [PI]) | KM = 0.016 mM−1, kcat = 2.77 s−1 | 5 |
Phosphorylation of PIP | PIP → PIP2 | kcat · [PIPK] · [PIP] / (KM + [PIP]) | KM = 0.01 mM−1, kcat = 1.021 s−1 | 6 |
Dephosphorylation of PIP2 | PIP2 → PIP | kcat · [PIP2P] · [PIP2] / (KM + [PIP2]) | KM = 250 μM−1, kcat = 1 s−1 | 7 |
Dephosphorylation of I1P | I1P → I | kcat · [IPP] · [I1P] / (KM + [I1P]) | KM = 0.12 mM−1, kcat = 1 s−1 | 8 |
Dephosphorylation of I4P | I4P → I | kcat · [IPP] · [I4P] / (KM + [I4P]) | KM = 0.12 mM−1, kcat = 1 s−1 | 8 |
Dephosphorylation of IP2 | IP2 → I4P | kcat · [IP2P] · [IP2] / (KM + [IP2]) | KM = 0.9 μM−1, kcat = 0.05 s−1 | 9 |
Dephosphorylation of IP3 | IP3 → IP2 | kcat · [IP3P] · [IP3] / (KM + [IP3]) | KM = 24 μM−1, kcat = 31 s−1 | 10 |
Phosphorylation of DAG | DAG → PA | kcat · [DGK] · [DAG] / (KM + [DAG]) | KM = 0.25 mM−1, kcat = 0.26 s−1 | 11 |
Synthesis of CDPDG | CTP + PA → CDPDG | kcat · [CDS] · [PA] · [CTP] / (KM1 · KM2 + (KM1 · [PA] + KM2 · [CTP] + [PA] · [CTP])) | KM1 = 0.5 mM−1, KM2 = 1.0 mM−1, kcat = 8.9 s−1 | 12 |
Synthesis of PI | CDPDG + I → PI | kcat · [PIS] · [CDPDG] · [I] / (KM1 · KM2 + (KM1 · [I] + KM2 · [CDPDG] + [I] · [CDPDG])) | KM1 = 13 μM−1, KM2 = 0.28 mM−1, kcat = 13.6 s−1 | 13 |
Activation of PKC | PKC ⇆ PKCa | k1 · [PKC] − k−1 · [PKCa] | k1 = 1 s−1, k−1 = 2 s−1 | 14 |
Activation of PKC·Ca2+cyt | PKC·Ca2+cyt ⇆ PKCa·Ca2+cyt | k1 · [PKC·Ca2+cyt] − k−1 · [PKCa·Ca2+cyt] | k1 = 1.3 s−1, k−1 = 3.5 s−1 | 14 |
Activation of PKC·Ca2+cyt ·DG | PKC·Ca2+cyt ·DAG ⇆ PKCa·Ca2+cyt ·DAG | k1 · [PKC·Ca2+cyt ·DAG] − k−1 · [PKCa·Ca2+cyt ·DAG] | k1 = 1 s−1, k−1 = 0.1 s−1 | 14 |
PKC binding Ca2+cyt | PKC + Ca2+cyt ⇆ PKC·Ca2+cyt | kon · [PKC] · [Ca2+cyt] − koff · [PKC·Ca2+cyt] | kon = 0.6 × 106 M−1·s−1, koff = 0.5 s−1 | 14 |
PKC·Ca2+cyt binding DAG | PKC·Ca2+cyt + DAG ⇆ PKC·Ca2+cyt ·DAG | kon · [PKC·Ca2+cyt] · [DAG] − koff · [PKC·Ca2+cyt ·DAG] | kon = 8 × 103 M−1·s−1, koff = 8.6348 s−1 | 14 |
PKCa binding Ca2+cyt | PKCa + Ca2+cyt ⇆ PKCa·Ca2+cyt | kon · [PKCa] · [Ca2+cyt] − koff · [PKCa·Ca2+cyt] | kon = 0.6 × 106 M−1·s−1, koff = 0.5 s−1 | 14 |
PKCa·Ca2+cyt binding DAG | PKCa·Ca2+cyt + DAG ⇆ PKCa·Ca2+cyt ·DAG | kon · [PKCa·Ca2+cyt] · [DAG] − koff · [PKCa·Ca2+cyt ·DAG] | kon = 8 × 103 M−1·s−1, koff = 8.6348 s−1 | 14 |
Activation of P2Y1 | P2Y1 ⇆ P2Y1* | k1 · [P2Y1] − (k1 / Kact) · [P2Y1*] | k1 = 7.9 s−1, Kact = 0.0001 | 15, 16† |
Activation of P2Y1·ADP | P2Y1·ADP ⇆ P2Y1*·ADP | αk1 · [P2Y1·ADP] − (k1 / Kact) · [P2Y1*·ADP] | α = 3.35, k1 = 7.9 s−1, Kact = 0.0001 | 15, 16† |
Activation of P2Y1·Gq·GDP | P2Y1·Gq·GDP ⇆ P2Y1*·Gq·GDP | βk1 · [P2Y1·Gq·GDP] − (k1 / Kact) · [P2Y1*·Gq·GDP] | β = 6.62, k1 = 7.9 s−1, Kact = 0.0001 | 15, 16† |
Activation of P2Y1·ADP·Gq·GDP | P2Y1·ADP·Gq·GDP ⇆ P2Y1*·ADP·Gq·GDP | αβδk1 · [P2Y1·ADP·Gq·GDP] − (k1 / Kact) · [P2Y1*·ADP·Gq·GDP] | α = 3.35, β = 6.62, δ = 9.85, k1 = 7.9 s−1, Kact = 0.0001 | 15, 16† |
P2Y1* binding Gq·GDP | P2Y1* + Gq·GDP ⇆ P2Y1*·Gq·GDP | βk11 · [P2Y1*] · [Gq·GDP] − (k11 / Kg) · [P2Y1*·Gq·GDP] | β = 6.62, k11 = 0.59 μM−1·s−1, Kq = 0.032 μM−1 | 15, 16† |
P2Y1*·ADP binding Gq·GDP | P2Y1*·ADP + Gq·GDP ⇆ P2Y1*·ADP·Gq·GDP | βk11 · [P2Y1*·ADP] · [Gq·GDP] − (k11 / (δγKg)) · [P2Y1*·Gq·GDP] | β = 6.62, k11 = 0.59 μM−1·s−1, δ = 9.85, γ = 9.39, Kq = 0.032 μM−1 | 15, 16† |
P2Y1 binding ADP | P2Y1 + ADP ⇆ P2Y1·ADP | k3 · [P2Y1] · [ADP] − (Kdk3) · [P2Y1·ADP] | k3 = 9.6 × 107 M−1·s−1, Kd = 99 nM | 15, 16† |
P2Y1·Gq·GDP binding ADP | P2Y1·Gq·GDP + ADP ⇆ P2Y1·ADP·Gq·GDP | k3 · [P2Y1·Gq·GDP] · [ADP] - (Kdk3 / γ) · [P2Y1·ADP·Gq·GDP] | k3 = 9.6 × 107 M−1·s−1, Kd = 99 nM, γ = 9.39 | 15, 16† |
P2Y1* binding ADP | P2Y1* + ADP ⇆ P2Y1*·ADP | αk3 · [P2Y1*] · [ADP] − Kdk3 · [P2Y1*·ADP] | α = 3.35, k3 = 9.6 × 107 M−1·s−1, Kd = 99 nM | 15, 16† |
P2Y1*·Gq·GDP binding ADP | P2Y1*·Gq·GDP + ADP ⇆ P2Y1*·ADP·Gq·GDP | αk3 · [P2Y1*·Gq·GDP] · [ADP] − (Kdk3 / δγ) · [P2Y1*·ADP·Gq·GDP] | α = 3.35, k3 = 9.6 × 107 M−1·s−1, Kd = 99 nM, δ = 9.85, γ = 9.39 | 15, 16† |
P2Y1*·Gq·GDP releasing GDP | P2Y1*·Gq·GDP ⇆ P2Y1*·Gq | k1 · [P2Y1*·Gq·GDP] − k−1 · [P2Y1*·Gq] · [GDP] | k1 = 17.8 s−1, k−1 = 1 × 106 M−1·s−1 | 15, 16† |
P2Y1*·Gq binding GTP | P2Y1*·Gq ⇆ P2Y1*·Gq·GTP | k1 · [P2Y1*·Gq] · [GTP] − k−1 · [P2Y1*·Gq·GTP] | k1 = 1 × 105 M−1·s−1, k−1 = 8 s−1 | 15, 16† |
P2Y1*·ADP·Gq·GDP releasing GDP | P2Y1*·ADP·Gq·GDP ⇆ P2Y1*·ADP·Gq | k1 · [P2Y1*·ADP·Gq·GDP] − k−1 · [P2Y1*·ADP·Gq] · [GDP] | k1 = 17.8 s−1, k−1 = 1 × 106 M−1·s−1 | 15, 16† |
P2Y1*·ADP·Gq binding GTP | P2Y1*·ADP·Gq ⇆ P2Y1*·ADP·Gq·GTP | k1 · [P2Y1*·ADP·Gq] · [GTP] − k−1 · [P2Y1*·ADP·Gq·GTP] | k1 = 1 × 105 M−1·s−1, k−1 = 8 s−1 | 15, 16† |
P2Y1*·Gq·GTP releasing Gq·GTP | P2Y1*·Gq·GTP ⇆ P2Y1* + Gq·GTP | k1 · [P2Y1*·Gq·GTP] − k−1 · [P2Y1*] · [Gq·GTP] | k1 = 850 s−1, k−1 = 1 × 107 M−1·s−1 | 15, 16† |
P2Y1*·ADP·Gq·GTP releasing Gq·GTP | P2Y1*·ADP·Gq·GTP ⇆ P2Y1*·ADP + Gq·GTP | k1 · [P2Y1*·ADP·Gq·GTP] − k−1 · [P2Y1*·ADP] · [Gq·GTP] | k1 = 850 s−1, k−1 = 1 × 107 M−1·s−1 | 15, 16† |
Gq·GTP autohydrolysis | Gq·GTP ⇆ Gα·GDP + Gβγ | kGTP · [Gq·GTP] | kGTP = 0.013 s−1 | 17 |
Activated Gq subunit association | Gα·GTP + Gβγ ⇆ Gq·GTP | k1 · [Gα·GTP] · [Gβγ] − k−1 · [Gq·GTP] | k1 = 0.10 μM−1·s−1, k−1 = 7.78 s−1 | 15 |
Unactivated Gq subunit association | Gα·GDP + Gβγ ⇆ Gq·GDP | k1 · [Gα·GDP] · [Gβγ] − k−1 · [Gq·GDP] | k1 = 0.10 μM−1·s−1, k−1 = 7.78 s−1 | 15 |
PLC-β binding Gq·GTP | PLC-β + Gq·GTP ⇆ PLC-β*·Gq·GTP | k1 · [PLC-β] · [Gq·GTP] − k−1 · [PLC-β*·Gq·GTP] | k1 = 1.61 μM−1·s−1, k−1 = 0.19 s−1 | 15, 16† |
PLC-β* hydrolyzing Gq·GTP | PLC-β*·Gq·GTP → PLC-β·Gq·GDP | kcat · [PLC-β*·Gq·GTP] | kcat = 25 s−1 | 17 |
PLC-β releasing Gq·GDP | PLC-β·Gq·GDP ⇆ PLC-β + Gq·GDP | k1 · [PLC·Gq·GDP] − k−1 · [PLC-β] · [Gq·GDP] | k1 = 1 × 105 s−1, k−1 = 100 M−1·s−1 | 15, 16† |
Of the 132 kinetic parameters, all but 11 were obtained from human platelet data or data from platelet-specific enzyme isoforms. These 11 parameters correspond to references 6, 8, 9, 11, and 12.
Dode L, Vilsen B, Van Baelen K, Wuytack F, Clausen JD, Andersen JP. Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 3 isoforms by steady-state and transient kinetic analyses. J Biol Chem. 2002;277:45579-45591.
Sneyd J, Dufour JF. A dynamic model of the type-2 inositol trisphosphate receptor. Proc Natl Acad Sci U S A. 2002;99:2398-2403.
Zschauer A, van Breemen C, Buhler FR, Nelson MT. Calcium channels in thrombin-activated human platelet membrane. Nature. 1988;334:703-705.
Rittenhouse SE. Human platelets contain phospholipase C that hydrolyzes polyphosphoinositides. Proc Natl Acad Sci U S A. 1983;80:5417-5420.
Kanoh H, Banno Y, Hirata M, Nozawa Y. Partial purification and characterization of phosphatidylinositol kinases from human platelets .Biochim Biophys Acta. 1990;1046:120-126.
Urumow T, Wieland OH. Purification and partial characterization of phosphatidylinositol-4-phosphate kinase from rat liver plasma membranes: further evidence for a stimulatory G-protein. Biochim Biophys Acta. 1990;1052:152-158.
Matzaris M, Jackson SP, Laxminarayan KM, Speed CJ, Mitchell CA. Identification and characterization of the phosphatidylinositol-(4, 5)-bisphosphate 5-phosphatase in human platelets. J Biol Chem. 1994;269:3397-3402.
Atack JR, Rapoport SI, Varley CL. Characterization of inositol monophosphatase in human cerebrospinal fluid. Brain Res. 1993;613:305-308.
Moyer JD, Reizes O, Dean NM, Malinowski N. D-myo-inositol (1,4)-bisphosphate 1-phosphate: partial purification from rat liver and characterization. Biochem Biophys Res Commun. 1987;146:1018-1026.
Mitchell CA, Connolly TM, Majerus PW. Identification and isolation of a 75-kDa inositol polyphosphate-5-phosphatase from human platelets. J Biol Chem. 1989;264:8873-8877.
Wissing J, Heim S, Wagner KG. Diacylglycerol kinase from suspension cultured plant cells: purification and properties. Plant Physiol. 1989;90:1546-1551.
Kelley MJ, Carman GM. Purification and characterization of CDP-diacylglycerol synthase from Saccharomyces cerevisiae. J Biol Chem. 1987;262:14563-14570.
Vargas LA, Li XM, Rosenthal AF. Inhibition of platelet phosphatidylinositol synthetase by an analog of CDP-diacylglycerol. Biochim Biophys Acta. 1984;796:123-128.
Bhalla US, Iyengar R. Emergent properties of networks of biological signaling pathways. Science. 1999;283:381-387.
Kinzer-Ursem TL, Linderman JJ. Both ligand- and cell-specific parameters control ligand agonism in a kinetic model of g protein-coupled receptor signaling. PLoS Comput Biol. 2007;3:e6.
Waldo GL, Harden TK. Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. Mol Pharmacol. 2004;65:426-436.
Mukhopadhyay S, Ross EM. Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins. Proc Natl Acad Sci U S A. 1999;96:9539-9544.
Rate equation or kinetic parameters estimated de novo in this study.