Figure 4
Figure 4. Successful autologous HSCT leads to a renewed and more diverse Treg TCR repertoire. (A) Tregs and non-Tregs from different blood collections of 4 HSCT-treated patients with refractory AID were sorted. These cell samples were used for TCR TCRβ sequencing. Per patient, each time point of blood sampling is shown. Per time point, 2 pie charts show the number and abundance of TCR sequences found for the Tregs and non-Tregs sorted from that cell sample. Color overlap between different pie charts does not represent the same TCR sequence. N represents the number of different TCR sequences found per sample, Di indicates the sample’s diversity (0 = no diversity, 1 = maximal diversity). (B) For patients 1 to 4, the changes in Di prior to HSCT and during follow up is shown in graphs. (C) TCRβ sequencing results of Tregs derived from 4 healthy controls are shown in a similar fashion as in panel A. aSCT, autologous stem cell transplantation; HC, healthy controls.

Successful autologous HSCT leads to a renewed and more diverse Treg TCR repertoire. (A) Tregs and non-Tregs from different blood collections of 4 HSCT-treated patients with refractory AID were sorted. These cell samples were used for TCR TCRβ sequencing. Per patient, each time point of blood sampling is shown. Per time point, 2 pie charts show the number and abundance of TCR sequences found for the Tregs and non-Tregs sorted from that cell sample. Color overlap between different pie charts does not represent the same TCR sequence. N represents the number of different TCR sequences found per sample, Di indicates the sample’s diversity (0 = no diversity, 1 = maximal diversity). (B) For patients 1 to 4, the changes in Di prior to HSCT and during follow up is shown in graphs. (C) TCRβ sequencing results of Tregs derived from 4 healthy controls are shown in a similar fashion as in panel A. aSCT, autologous stem cell transplantation; HC, healthy controls.

Close Modal

or Create an Account

Close Modal
Close Modal