Figure 1
Figure 1. GATA-1 induces erythroid and megakaryocytic differentiation in G1ME cells. (A) Schematic of G1ME cell differentiation into megakaryocytes and erythrocytes after GATA-1 is retrovirally restored. (B) Retroviral constructs used for gene rescue. The MIGR1 vector encodes green fluorescent protein (GFP) linked to an internal ribosome entry site (IRES). MIGR1-GATA-1 also contains the full-length coding region of the murine GATA-1 cDNA. (C) GATA-1 protein expression in transduced G1ME cells determined by Western blotting. GATA-1 expression in transduced G1ME cells approximated endogenous expression in murine erythroleukemia (MEL) cells. (D) Expression of the erythroid-specific marker Ter119 and terminal megakaryocytic marker GP1b of G1ME cells 4 days after transduction with MIGR1 or MIGR1-GATA-1. Percentages refer to fraction of GFP+ cells expressing Ter119 or GP1b.

GATA-1 induces erythroid and megakaryocytic differentiation in G1ME cells. (A) Schematic of G1ME cell differentiation into megakaryocytes and erythrocytes after GATA-1 is retrovirally restored. (B) Retroviral constructs used for gene rescue. The MIGR1 vector encodes green fluorescent protein (GFP) linked to an internal ribosome entry site (IRES). MIGR1-GATA-1 also contains the full-length coding region of the murine GATA-1 cDNA. (C) GATA-1 protein expression in transduced G1ME cells determined by Western blotting. GATA-1 expression in transduced G1ME cells approximated endogenous expression in murine erythroleukemia (MEL) cells. (D) Expression of the erythroid-specific marker Ter119 and terminal megakaryocytic marker GP1b of G1ME cells 4 days after transduction with MIGR1 or MIGR1-GATA-1. Percentages refer to fraction of GFP+ cells expressing Ter119 or GP1b.

Close Modal

or Create an Account

Close Modal
Close Modal