Fig. 9.
Fig. 9. Transcriptional regulation of myelopoiesis. (A) Model for the transcriptional regulation of commitment to the granulocytic and monocytic lineages. Arrows represent stimulation and the perpendicular bar indicates inhibition. C/EBP or PU.1 commit pluripotent hematopoietic stem cells (PHSC) to CFU-GM. C/EBP may modestly induce PU.1 in these cells. Increased activity of C/EBP stimulates granulopoiesis, with further induction of PU.1, and may inhibit monocyte development.25 PU.1 is required for terminal monocyte differentiation and is also required for B-lymphoid development. (B) Model for the transcriptional program regulating granulopoiesis in committed progenitors. G-CSF activates several signal transduction pathways that allow cell proliferation and stimulate differentiation, including the Ras/MAPK pathway, the Jak/Stat pathway, and induction of c-Myc. The CBF and c-Myb transcription factors also stimulate proliferation. Removal of IL-3 signals, addition of G-CSF signals, or both lead to elevated C/EBP levels, a phenomenon inhibited by bcr/abl. C/EBP induces increased levels of PU.1 and, together with CBF and c-Myb, these factors then activate early markers of myeloid differentiation, including the MPO and NE genes. C/EBP also leads to a delayed increased in p27Kip1, in cooperation with Stat3 and other factors. p27 in turn induces Rb hypophosphorylation and a G1/S arrest. Hypophosphorylated Rb, PU.1, and several other transcription factors expressed, activated, or inactivated at a later stage in granulopoiesis (eg, C/EBPβ, C/EBPɛ, Sp1, RAR, and loss of CDP) may then induce late differentiation markers, such as the LF gene and genes required to induce the neutrophilic morphology.

Transcriptional regulation of myelopoiesis. (A) Model for the transcriptional regulation of commitment to the granulocytic and monocytic lineages. Arrows represent stimulation and the perpendicular bar indicates inhibition. C/EBP or PU.1 commit pluripotent hematopoietic stem cells (PHSC) to CFU-GM. C/EBP may modestly induce PU.1 in these cells. Increased activity of C/EBP stimulates granulopoiesis, with further induction of PU.1, and may inhibit monocyte development.25 PU.1 is required for terminal monocyte differentiation and is also required for B-lymphoid development. (B) Model for the transcriptional program regulating granulopoiesis in committed progenitors. G-CSF activates several signal transduction pathways that allow cell proliferation and stimulate differentiation, including the Ras/MAPK pathway, the Jak/Stat pathway, and induction of c-Myc. The CBF and c-Myb transcription factors also stimulate proliferation. Removal of IL-3 signals, addition of G-CSF signals, or both lead to elevated C/EBP levels, a phenomenon inhibited by bcr/abl. C/EBP induces increased levels of PU.1 and, together with CBF and c-Myb, these factors then activate early markers of myeloid differentiation, including the MPO and NE genes. C/EBP also leads to a delayed increased in p27Kip1, in cooperation with Stat3 and other factors. p27 in turn induces Rb hypophosphorylation and a G1/S arrest. Hypophosphorylated Rb, PU.1, and several other transcription factors expressed, activated, or inactivated at a later stage in granulopoiesis (eg, C/EBPβ, C/EBPɛ, Sp1, RAR, and loss of CDP) may then induce late differentiation markers, such as the LF gene and genes required to induce the neutrophilic morphology.

Close Modal

or Create an Account

Close Modal
Close Modal