Fig. 4.
Molecular bases of partial D phenotypes.
The different alleles of RHD that cause partial D phenotypes are depicted here graphically. The genetic structure of each partial DRHD 10-exon gene is shown, as are associated low-incidence antigen(s) and the estimated gene frequency. RHD (ie, wild type) exons are shown as black boxes; where they have been replaced byRHCE equivalents is shown as white boxes. Missense mutations are indicated within the exon where they occur. We have used the original Roman numeral notation (ie, DII to DVII) and the more recent 3-letter notation (eg, DFR, DBT) for the different D categories. Where partial D phenotypes have identical (or very similar) serologic profiles but different genetic backgrounds, we have adapted the classification originally described by Mouro et al190 to describe different DVIphenotypes (types I and II). Thus, we depict DIV types I to IV, DV types I to VI; DVI types I to III, and DFR types I and II. We use DVa to indicate the presence of the DW antigen and DV to represent samples that have a similar molecular background but that either do not express the DW antigen or have not been tested for this antigen.Few = 1 to 10 examples. Many = 11 or more examples as indicated by serological testing. DVII is common (1 in 900) in the German population.191 Under “Ethnic Origin,” B = black, C = Caucasian, and J = Japanese. The information used for the point mutations used in this figure are as follows: D+G−106; DNU and DII192; DHMi92; DVII193; DVa71,194 DFW195; DHR.196 The information used for the rearrangements in this figure was obtained from the following: DIIIa197; DIIIb106; DIIIc 198; DIVa type I 194; DIVbtype II194; DIVb type III92; DIVb type IV195; DVa type I194; DVa type II194; DV type III102; DVa type IV156; DV type V156; DVtype VI156; DVI type I199,200; DVI type II190; DVI type III71; DFR type I194; DFR type II201; DBT type I202; DBT type II203; ARRO-1204; DCS205.