Healthy volunteer donors are committed to contributing key medical resources. Repeated, regular donation of whole blood represents a specific trigger of hematopoietic stress. Hematopoietic stem cells (HSCs) are known to respond to environmental triggers by altering their differentiation and/or proliferative behavior. This can manifest in long-term changes in the clonal dynamics of HSCs, such as the age-associated expansion of HSCs carrying somatic mutations in genes associated with hematologic cancers—that is, clonal hematopoiesis (CH). A recent study revealed a higher prevalence of CH in frequent donors driven by low-risk mutations in genes encoding for epigenetic modifiers, with DNMT3A and TET2 being the most common. No difference in the prevalence of known preleukemic driver mutations was detected between the cohorts, underscoring the safety of repetitive blood donations. Functional analyses suggest a link between the presence of selected DNMT3A mutations found in the frequent donor group and the responsiveness of the cells to the molecular mediator of bleeding stress, erythropoietin (EPO), but not inflammation. These findings define EPO as one of the environmental factors that provide a fitness advantage to specific mutant HSCs. Analyzing CH prevalence and characteristics in other donor cohorts will be important to comprehensively assess the health risks associated with the different types of donation.

1.
Welch
JS
,
Ley
TJ
,
Link
DC
, et al.
The origin and evolution of mutations in acute myeloid leukemia
.
Cell
.
2012
;
150
(
2
):
264
-
278
.
doi:10.1016/j.cell.2012.06.023
.
2.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med
.
2014
;
371
(
26
):
2488
-
2498
.
doi:10.1056/NEJMoa1408617
.
3.
Xie
M
,
Lu
C
,
Wang
J
, et al.
Age-related mutations associated with clonal hematopoietic expansion and malignancies
.
Nat Med
.
2014
;
20
(
12
):
1472
-
1478
.
doi:10.1038/nm.3733
.
4.
Genovese
G
,
Kähler
AK
,
Handsaker
RE
, et al.
Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
.
N Engl J Med
.
2014
;
371
(
26
):
2477
-
2487
.
doi:10.1056/NEJMoa1409405
.
5.
Jaiswal
S
,
Ebert
BL
.
Clonal hematopoiesis in human aging and disease
.
Science
.
2019
;
366
(
6465
).
doi:10.1126/science.aan4673
.
6.
Wong
TN
,
Miller
CA
,
Jotte
MRM
, et al.
Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential
.
Nat Commun
.
2018
;
9
(
1
):
455
.
doi:10.1038/s41467-018-02858-0
.
7.
Wong
TN
,
Miller
CA
,
Klco
JM
, et al.
Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML
.
Blood
.
2016
;
127
(
7
):
893
-
897
.
doi:10.1182/blood-2015-10-677021
.
8.
Wong
TN
,
Ramsingh
G
,
Young
AL
, et al.
Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia
.
Nature
.
2015
;
518
(
7540
):
552
-
555
.
doi:10.1038/nature13968
.
9.
Fabre
MA
,
de Almeida
JG
,
Fiorillo
E
, et al.
The longitudinal dynamics and natural history of clonal haematopoiesis
.
Nature
.
2022
;
606
(
7913
):
335
-
342
.
doi:10.1038/s41586-022-04785-z
.
10.
Mitchell
E
,
Spencer Chapman
M
,
Williams
N
, et al.
Clonal dynamics of haematopoiesis across the human lifespan
.
Nature
.
2022
;
606
(
7913
):
343
-
350
.
doi:10.1038/s41586-022-04786-y
.
11.
Hormaechea-Agulla
D
,
Matatall
KA
,
Le
DT
, et al.
Chronic infection drives DNMT3A-loss-of-function clonal hematopoiesis via IFNγ signaling
.
Cell Stem Cell
.
2021
;
28
(
8
):
1428
-
1442.e61442e6
.
doi:10.1016/j.stem.2021.03.002
.
12.
Zioni
N
,
Bercovich
AA
,
Chapal-Ilani
N
, et al.
Inflammatory signals from fatty bone marrow support DNMT3A driven clonal hematopoiesis
.
Nat Commun
.
2023
;
14
(
1
):
2070
.
doi:10.1038/s41467-023-36906-1
.
13.
Abelson
S
,
Collord
G
,
Ng
SWK
, et al.
Prediction of acute myeloid leukaemia risk in healthy individuals
.
Nature
.
2018
;
559
(
7714
):
400
-
404
.
doi:10.1038/s41586-018-0317-6
.
14.
Desai
P
,
Mencia-Trinchant
N
,
Savenkov
O
, et al.
Somatic mutations precede acute myeloid leukemia years before diagnosis
.
Nat Med
.
2018
;
24
(
7
):
1015
-
1023
.
doi:10.1038/s41591-018-0081-z
.
15.
Young
AL
,
Tong
RS
,
Birmann
BM
,
Druley
TE
.
Clonal hematopoiesis and risk of acute myeloid leukemia
.
Haematologica
.
2019
;
104
(
12
):
2410
-
2417
.
doi:10.3324/haematol.2018.215269
.
16.
Jaiswal
S
,
Natarajan
P
,
Silver
AJ
, et al.
Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease
.
N Engl J Med
.
2017
;
377
(
2
):
111
-
121
.
doi:10.1056/NEJMoa1701719
.
17.
Miller
PG
,
Qiao
D
,
Rojas-Quintero
J
, et al
;
COPDGene Study Investigators; National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine Consortium
.
Association of clonal hematopoiesis with chronic obstructive pulmonary disease
.
Blood
.
2022
;
139
(
3
):
357
-
368
.
doi:10.1182/blood.2021013531
.
18.
Agrawal
M
,
Niroula
A
,
Cunin
P
, et al.
TET2-mutant clonal hematopoiesis and risk of gout
.
Blood
.
2022
;
140
(
10
):
1094
-
1103
.
doi:10.1182/blood.2022015384
.
19.
Wong
WJ
,
Emdin
C
,
Bick
AG
, et al
;
National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine Hematology Working Group
.
Clonal haematopoiesis and risk of chronic liver disease
.
Nature
.
2023
;
616
(
7958
):
747
-
754
.
doi:10.1038/s41586-023-05857-4
.
20.
Bouzid
H
,
Belk
J
,
Jan
M
, et al.
Clonal hematopoiesis is associated with reduced risk of Alzheimer's disease
.
Blood
.
2021
;
138
(
suppl 1
):
5
.
doi:10.1182/blood-2021-151064
.
21.
Frick
M
,
Chan
W
,
Arends
CM
, et al.
Role of donor clonal hematopoiesis in allogeneic hematopoietic stem-cell transplantation
.
J Clin Oncol
.
2019
;
37
(
5
):
375
-
385
.
doi:10.1200/JCO.2018.79.2184
.
22.
Gibson
CJ
,
Kim
HT
,
Zhao
L
, et al.
Donor clonal hematopoiesis and recipient outcomes after transplantation
.
J Clin Oncol
.
2022
;
40
(
2
):
189
-
201
.
doi:10.1200/JCO.21.02286
.
23.
Weeks
LD
,
Niroula
A
,
Neuberg
D
, et al.
Prediction of risk for myeloid malignancy in clonal hematopoiesis
.
NEJM Evid
.
2023
;
2
(
5
).
doi:10.1056/evidoa2200310
.
24.
Kiss
JE
,
Brambilla
D
,
Glynn
SA
, et al
;
National Heart, Lung, and Blood Institute (NHLBI) Recipient Epidemiology and Donor Evaluation Study–III (REDS-III)
.
Oral iron supplementation after blood donation: a randomized clinical trial
.
JAMA
.
2015
;
313
(
6
):
575
-
583
.
doi:10.1001/jama.2015.119
.
25.
Riško
P
,
Pláteník
J
,
Buchal
R
,
Potočková
J
,
Kraml
PJ
.
Long-term donors versus non-donor men: iron metabolism and the atherosclerotic process
.
Atherosclerosis
.
2018
;
272
(
May
):
14
-
20
.
doi:10.1016/j.atherosclerosis.2018.03.009
.
26.
Zhao
J
,
Dahlén
T
,
Brynolf
A
,
Edgren
G.
Risk of hematological malignancy in blood donors: a nationwide cohort study
.
Transfusion
.
2020
;
60
(
11
):
2591
-
2596
.
doi:10.1111/trf.16020
.
27.
Meurrens
J
,
Steiner
T
,
Ponette
J
, et al.
Effect of repeated whole blood donations on aerobic capacity and hemoglobin mass in moderately trained male subjects: a randomized controlled trial
.
Sports Med Open
.
2016
;
2
(
1
):
43
.
doi:10.1186/s40798-016-0067-7
.
28.
Maeda
H
,
Hitomi
Y
,
Hirata
R
, et al.
The effect of phlebotomy on serum erythropoietin levels in normal healthy subjects
.
Int J Hematol
.
1992
;
55
(
2
):
111
-
115
.
29.
Liggett
LA
,
Cato
LD
,
Weinstock
JS
, et al
;
National Heart, Blood, and Lung Institute Trans-Omics for Precision Medicine Consortium
.
Clonal hematopoiesis in sickle cell disease
.
J Clin Invest
.
2022
;
132
(
4
).
doi:10.1172/JCI156060
.
30.
Pincez
T
,
Lee
SSK
,
Ilboudo
Y
, et al.
Clonal hematopoiesis in sickle cell disease
.
Blood
.
2021
;
138
(
21
):
2148
-
2152
.
doi:10.1182/blood.2021011121
.
31.
Yoshizato
T
,
Dumitriu
B
,
Hosokawa
K
, et al.
Somatic mutations and clonal hematopoiesis in aplastic anemia
.
N Engl J Med
.
2015
;
373
(
1
):
35
-
47
.
doi:10.1056/NEJMoa1414799
.
32.
Karpova
D
,
Encabo
HH
,
Donato
E
, et al.
Frequent whole blood donations select for DNMT3A variants mediating enhanced response to erythropoietin
.
medRxiv
.
2022
:2022.07.24.22277825.
doi:10.1182/blood-2022-167821
.
33.
Watson
CJ
,
Papula
AL
,
Poon
GYP
, et al.
The evolutionary dynamics and fitness landscape of clonal hematopoiesis
.
Science
.
2020
;
367
(
6485
):
1449
-
1454
.
doi:10.1126/science.aay9333
.
34.
Tuval
A
,
Shlush
LI
.
Evolutionary trajectory of leukemic clones and its clinical implications
.
Haematologica
.
2019
;
104
(
5
):
872
-
880
.
doi:10.3324/haematol.2018.195289
.
35.
Jaiswal
S
,
Natarajan
P
,
Ebert
BL
.
Clonal hematopoiesis and atherosclerosis
.
N Engl J Med
.
2017
;
377
(
14
):
1401
-
1402
.
doi:10.1056/NEJMc1710381
.
36.
de Graaf
CA
,
Metcalf
D.
Thrombopoietin and hematopoietic stem cells
.
Cell Cycle
.
2011
;
10
(
10
):
1582
-
1589
.
doi:10.4161/cc.10.10.15619
.
37.
Dettke
M
,
Hlousek
M
,
Kurz
M
, et al.
Increase in endogenous thrombopoietin in healthy donors after automated plateletpheresis
.
Transfusion
.
1998
;
38
(
5
):
449
-
453
.
doi:10.1046/j.1537-2995.1998.38598297213.x
.
You do not currently have access to this content.