CD19-specific chimeric antigen receptor (CAR) T-cell therapy has become an integral part of our treatment armamentarium for pediatric patients with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL). However, despite initial remission rates of greater than 80%, durable remission occurs in only 40% to 50% of patients. In this review we summarize our current knowledge of the role of consolidative hematopoietic cell transplantation in the management of pediatric patients who achieved a minimal residual disease-negative complete response post CD19 CAR T-cell therapy. In addition, we review approaches to enhance effector function CD19 CAR T cells, focusing on how to improve persistence and prevent the emergence of CD19− B-ALL blasts.

1.
Hunger
SP
,
Raetz
EA
.
How I treat relapsed acute lymphoblastic leukemia in the pediatric population
.
Blood
.
2020
;
136
(
16
):
1803
-
1812
.
doi:10.1182/blood.2019004043
.
2.
Sun
W
,
Malvar
J
,
Sposto
R
, et al.
Outcome of children with multiply relapsed B-cell acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia & lymphoma study
.
Leukemia
.
2018
;
32
(
11
):
2316
-
2325
.
doi:10.1038/s41375-018-0094-0
.
3.
Maude
SL
,
Frey
N
,
Shaw
PA
, et al.
Chimeric antigen receptor T cells for sustained remissions in leukemia
.
N Engl J Med
.
2014
;
371
(
16
):
1507
-
1517
.
doi:10.1056/NEJMoa1407222
.
4.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
439
-
448
.
doi:10.1056/NEJMoa1709866
.
5.
Gardner
RA
,
Finney
O
,
Annesley
C
, et al.
Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults
.
Blood
.
2017
;
129
(
25
):
3322
-
3331
.
doi:10.1182/blood-2017-02-769208
.
6.
Shah
NN
,
Lee
DW
,
Yates
B
, et al.
Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL
.
J Clin Oncol
.
2021
;
39
(
15
):
1650
-
1659
.
doi:10.1200/JCO.20.02262
.
7.
Jacoby
E
,
Bielorai
B
,
Hutt
D
, et al.
Parameters of long-term response with CD28-based CD19 chimaeric antigen receptor-modified T cells in children and young adults with B-acute lymphoblastic leukaemia
.
Br J Haematol
.
2022
;
197
(
4
):
475
-
481
.
doi:10.1111/bjh.18105
.
8.
Talleur
AC
,
Qudeimat
A
,
Métais
JY
, et al.
Preferential expansion of CD8+ CD19-CAR T cells postinfusion and the role of disease burden on outcome in pediatric B-ALL
.
Blood Adv
.
2022
;
6
(
21
):
5737
-
5749
.
doi:10.1182/bloodadvances.2021006293
.
9.
Myers
RM
,
Taraseviciute
A
,
Steinberg
SM
, et al.
Blinatumomab nonresponse and high-disease burden are associated with inferior outcomes after CD19-CAR for B-ALL
.
J Clin Oncol
.
2022
;
40
(
9
):
932
-
944
.
doi:10.1200/JCO.21.01405
.
10.
Schultz
LM
,
Baggott
C
,
Prabhu
S
, et al.
Disease burden affects outcomes in pediatric and young adult B-cell lymphoblastic leukemia after commercial tisagenlecleucel: a pediatric real-world chimeric antigen receptor consortium report
.
J Clin Oncol
.
2022
;
40
(
9
):
945
-
955
.
doi:10.1200/JCO.20.03585
.
11.
Ravich
JW
,
Huang
S
,
Zhou
Y
, et al.
Impact of high disease burden on survival in pediatric patients with B-ALL treated with tisagenlecleucel
.
Transplant Cell Ther
.
2022
;
28
(
2
):
73.e1
-
73.73.e9
.
doi:10.1016/j.jtct.2021.11.019
.
12.
Dourthe
ME
,
Rabian
F
,
Yakouben
K
, et al.
Determinants of CD19-positive vs CD19-negative relapse after tisagenlecleucel for B-cell acute lymphoblastic leukemia
.
Leukemia
.
2021
;
35
(
12
):
3383
-
3393
.
doi:10.1038/s41375-021-01281-7
.
13.
Schultz
LM
,
Eaton
A
,
Baggott
C
, et al.
Outcomes after nonresponse and relapse post-tisagenlecleucel in children, adolescents, and young adults with B-cell acute lymphoblastic leukemia
.
J Clin Oncol
.
2023
;
41
(
2
):
354
-
363
.
doi:10.1200/JCO.22.01076
.
14.
Schultz
L
,
Mackall
CL
.
The future of CAR T-cell therapy for B-cell acute lymphoblastic leukemia in pediatrics and adolescents
.
Expert Opin Biol Ther
.
2023
;
23
(
7
):
633
-
640
.
doi:10.1080/14712598.2023.2227086
.
15.
Fabrizio
VA
,
Kernan
NA
,
Boulad
F
, et al.
Low toxicity and favorable overall survival in relapsed/refractory B-ALL following CAR T cells and CD34- selected T-cell depleted allogeneic hematopoietic cell transplant
.
Bone Marrow Transpl
.
2020
;
55
(
11
):
2160
-
2169
.
doi:10.1038/s41409-020-0926-1
.
16.
Laetsch
TW
,
Maude
SL
,
Rives
S
, et al.
Three-year update of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia in the ELIANA trial
.
J Clin Oncol
.
2023
;
41
(
9
):
1664
-
1669
.
doi:10.1200/JCO.22.00642
.
17.
Pasquini
MC
,
Hu
ZH
,
Curran
K
, et al.
Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma
.
Blood Adv
.
2020
;
4
(
21
):
5414
-
5424
.
doi:10.1182/bloodadvances.2020003092
.
18.
Summers
C
,
Wu
QV
,
Annesley
C
, et al.
Hematopoietic cell transplantation after CD19 chimeric antigen receptor T cell-induced acute lymphoblastic lymphoma remission confers a leukemia-free survival advantage
.
Transplant Cell Ther
.
2022
;
28
(
1
):
21
-
29
.
doi:10.1016/j.jtct.2021.10.003
.
19.
Jacoby
E
,
Ghorashian
S
,
Vormoor
B
, et al.
CD19 CAR T-cells for pediatric relapsed acute lymphoblastic leukemia with active CNS involvement: a retrospective international study
.
Leukemia
.
2022
;
36
(
6
):
1525
-
1532
.
doi:10.1038/s41375-022-01546-9
.
20.
Leahy
AB
,
Devine
KJ
,
Li
Y
, et al.
Impact of high-risk cytogenetics on outcomes for children and young adults receiving CD19-directed CAR T-cell therapy
.
Blood
.
2022
;
139
(
14
):
2173
-
2185
.
doi:10.1182/blood.2021012727
.
21.
Laetsch
TW
,
Maude
SL
,
Balduzzi
A
, et al.
Tisagenlecleucel in pediatric and young adult patients with Down syndrome-associated relapsed/refractory acute lymphoblastic leukemia
.
Leukemia
.
2022
;
36
(
6
):
1508
-
1515
.
doi:10.1038/s41375-022-01550-z
.
22.
Moskop
A
,
Pommert
L
,
Baggott
C
, et al.
Real-world use of tisagenlecleucel in infant acute lymphoblastic leukemia
.
Blood Adv
.
2022
;
6
(
14
):
4251
-
4255
.
doi:10.1182/bloodadvances.2021006393
.
23.
Ghorashian
S
,
Jacoby
E
,
De Moerloose
B
, et al.
Tisagenlecleucel therapy for relapsed or refractory B-cell acute lymphoblastic leukaemia in infants and children younger than 3 years of age at screening: an international, multicentre, retrospective cohort study
.
Lancet Haematol
.
2022
;
9
(
10
):
e766
-
e775
.
doi:10.1016/S2352-3026(22)00225-3
.
24.
Fabrizio
VA
,
Phillips
CL
,
Lane
A
, et al.
Tisagenlecleucel outcomes in relapsed/refractory extramedullary ALL: a pediatric real world CAR consortium report
.
Blood Adv
.
2022
;
6
(
2
):
600
-
610
.
doi:10.1182/bloodadvances.2021005564
.
25.
Leahy
AB
,
Newman
H
,
Li
Y
, et al.
CD19-targeted chimeric antigen receptor T-cell therapy for CNS relapsed or refractory acute lymphocytic leukaemia: a post-hoc analysis of pooled data from five clinical trials
.
Lancet Haematol
.
2021
;
8
(
10
):
e711
-
e722
.
doi:10.1016/S2352-3026(21)00238-6
.
26.
Pulsipher
MA
,
Han
X
,
Maude
SL
, et al.
Next-generation sequencing of minimal residual disease for predicting relapse after tisagenlecleucel in children and young adults with acute lymphoblastic leukemia
.
Blood Cancer Discov
.
2022
;
3
(
1
):
66
-
81
.
doi:10.1158/2643-3230.bcd-21-0095
.
27.
Abdel-Azim
H
,
Quigg
TC
,
Malvar
J
, et al.
Excellent relapse-free and overall survival in pre-HCT next-generation sequencing (NGS-MRD) negative B-ALL patients with or without TBI-based conditioning: outcome of the observational arm of the pediatric transplantation and cellular therapy consortium (PTCTC) ONC1701 endrad study
.
Transplant Cell Ther
.
2023
;
29
(
2
):
s94
-
S96
.
doi:10.1016/s2666-6367(23)00187-2
.
28.
Orlando
EJ
,
Han
X
,
Tribouley
C
, et al.
Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia
.
Nat Med
.
2018
;
24
(
10
):
1504
-
1506
.
doi:10.1038/s41591-018-0146-z
.
29.
Sotillo
E
,
Barrett
DM
,
Black
KL
, et al.
Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy
.
Cancer Discov
.
2015
;
5
(
12
):
1282
-
1295
.
doi:10.1158/2159-8290.CD-15-1020
.
30.
Gardner
R
,
Wu
D
,
Cherian
S
, et al.
Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy
.
Blood
.
2016
;
127
(
20
):
2406
-
2410
.
doi:10.1182/blood-2015-08-665547
.
31.
Lamble
AJ
,
Myers
RM
,
Taraseviciute
A
, et al.
Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells
.
Blood Adv
.
2023
;
7
(
4
):
575
-
585
.
doi:10.1182/bloodadvances.2022007423
.
32.
Ruella
M
,
Xu
J
,
Barrett
DM
, et al.
Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell
.
Nat Med
.
2018
;
24
(
10
):
1499
-
1503
.
doi:10.1038/s41591-018-0201-9
.
33.
Fry
TJ
,
Shah
NN
,
Orentas
RJ
, et al.
CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy
.
Nat Med
.
2018
;
24
(
1
):
20
-
28
.
doi:10.1038/nm.4441
.
34.
Shah
NN
,
Highfill
SL
,
Shalabi
H
, et al.
CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial
.
J Clin Oncol
.
2020
;
38
(
17
):
1938
-
1950
.
doi:10.1200/JCO.19.03279
.
35.
Spiegel
JY
,
Patel
S
,
Muffly
L
, et al.
CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial
.
Nat Med
.
2021
;
27
(
8
):
1419
-
1431
.
doi:10.1038/s41591-021-01436-0
.
36.
Cordoba
S
,
Onuoha
S
,
Thomas
S
, et al.
CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial
.
Nat Med
.
2021
;
27
(
10
):
1797
-
1805
.
doi:10.1038/s41591-021-01497-1
.
37.
Wang
T
,
Tang
Y
,
Cai
J
, et al.
Coadministration of CD19- and CD22-directed chimeric antigen receptor T-cell therapy in childhood B-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial
.
J Clin Oncol
.
2023
;
41
(
9
):
1670
-
1683
.
doi:10.1200/jco.22.01214
.
38.
Qin
H
,
Cho
M
,
Haso
W
, et al.
Eradication of B-ALL using chimeric antigen receptor-expressing T cells targeting the TSLPR oncoprotein
.
Blood
.
2015
;
126
(
5
):
629
-
639
.
doi:10.1182/blood-2014-11-612903
.
39.
Niswander
LM
,
Graff
ZT
,
Chien
CD
, et al.
Potent preclinical activity of FLT3-directed chimeric antigen receptor T-cell immunotherapy against FLT3-mutant acute myeloid leukemia and KMT2A-rearranged acute lymphoblastic leukemia
.
Haematologica
.
2023
;
108
(
2
):
457
-
471
.
doi:10.3324/haematol.2022.281456
.
40.
Fousek
K
,
Watanabe
J
,
Joseph
SK
, et al.
CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression
.
Leukemia
.
2021
;
35
(
1
):
75
-
89
.
doi:10.1038/s41375-020-0792-2
.
41.
Wilson
TL
,
Kim
H
,
Chou
CH
, et al.
Common trajectories of highly effective CD19-specific CAR T cells identified by endogenous T-cell receptor lineages
.
Cancer Discov
.
2022
;
12
(
9
):
2098
-
2119
.
doi:10.1158/2159-8290.CD-21-1508
.
42.
Fraietta
JA
,
Lacey
SF
,
Orlando
EJ
, et al.
Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia
.
Nat Med
.
2018
;
24
(
5
):
563
-
571
.
doi:10.1038/s41591-018-0010-1
.
43.
Finney
OC
,
Brakke
H
,
Rawlings-Rhea
S
, et al.
CD19 CAR T cell product and disease attributes predict leukemia remission durability
.
J Clin Invest
.
2019
;
129
(
5
):
2123
-
2132
.
doi:10.1172/JCI125423
.
44.
Chen
GM
,
Chen
C
,
Das
RK
, et al.
Integrative bulk and single-cell profiling of premanufacture T-cell populations reveals factors mediating long-term persistence of CAR T-cell therapy
.
Cancer Discov
.
2021
;
11
(
9
):
2186
-
2199
.
doi:10.1158/2159-8290.CD-20-1677
.
45.
Anderson
ND
,
Birch
J
,
Accogli
T
, et al.
Transcriptional signatures associated with persisting CD19 CAR-T cells in children with leukemia
.
Nat Med
.
2023
;
29
(
7
):
1700
-
1709
.
doi:10.1038/s41591-023-02415-3
.
46.
Melenhorst
JJ
,
Chen
GM
,
Wang
M
, et al.
Decade-long leukaemia remissions with persistence of CD4+ CAR T cells
.
Nature
.
2022
;
602
(
7897
):
503
-
509
.
doi:10.1038/s41586-021-04390-6
.
47.
Li
AM
,
Hucks
GE
,
Dinofia
AM
, et al.
Checkpoint inhibitors augment CD19- directed chimeric antigen receptor (CAR) T cell therapy in relapsed B-cell acute lymphoblastic leukemia
.
Blood
.
2018
;
132
(
suppl 1
):
556
.
doi:10.1182/blood-2018-99-112572
.
48.
Michelozzi
IM
,
Gomez-Castaneda
E
,
Pohle
RVC
, et al.
Activation priming and cytokine polyfunctionality modulate the enhanced functionality of low-affinity CD19 CAR T cells
.
Blood Adv
.
2023
;
7
(
9
):
1725
-
1738
.
doi:10.1182/bloodadvances.2022008490
.
49.
Ghorashian
S
,
Kramer
AM
,
Onuoha
S
, et al.
Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR
.
Nat Med
.
2019
;
25
(
9
):
1408
-
1414
.
doi:10.1038/s41591-019-0549-5
.
50.
Myers
RM
,
Li
Y
,
Barz Leahy
A
, et al.
Humanized CD19-targeted chimeric antigen receptor (CAR) T cells in CAR-naive and CAR-exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia
.
J Clin Oncol
.
2021
;
39
(
27
):
3044
-
3055
.
doi:10.1200/JCO.20.03458
.
51.
Guedan
S
,
Posey
AD
Jr
,
Shaw
C
, et al.
Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation
.
JCI Insight
.
2018
;
3
(
1
).
doi:10.1172/jci.insight.96976
.
52.
Chockley
PJ
,
Ibanez-Vega
J
,
Krenciute
G
,
Talbot
LJ
,
Gottschalk
S.
Synapse- tuned CARs enhance immune cell anti-tumor activity [published online ahead of print 2 February 2023]
.
Nat Biotechnol
.
doi:10.1038/s41587-022-01650-2
.
53.
Tousley
AM
,
Rotiroti
MC
,
Labanieh
L
, et al.
Co-opting signalling molecules enables logic-gated control of CAR T cells
.
Nature
.
2023
;
615
(
7952
):
507
-
516
.
doi:10.1038/s41586-023-05778-2
.
54.
Lynn
RC
,
Weber
EW
,
Sotillo
E
, et al.
c-Jun overexpression in CAR T cells induces exhaustion resistance
.
Nature
.
2019
;
576
(
7786
):
293
-
300
.
doi:10.1038/s41586-019-1805-z
.
55.
Wagner
J
,
Wickman
E
,
DeRenzo
C
,
Gottschalk
S.
CAR T cell therapy for solid tumors: bright future or dark reality?
Mol Ther
.
2020
;
28
(
11
):
2320
-
2339
.
doi:10.1016/j.ymthe.2020.09.015
.
56.
Labanieh
L
,
Mackall
CL
.
CAR immune cells: design principles, resistance and the next generation
.
Nature
.
2023
;
614
(
7949
):
635
-
648
.
doi:10.1038/s41586-023-05707-3
.
57.
Hoyos
V
,
Savoldo
B
,
Quintarelli
C
, et al.
Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti- lymphoma/leukemia effects and safety
.
Leukemia
.
2010
;
24
(
6
):
1160
-
1170
.
doi:10.1038/leu.2010.75
.
58.
Wei
J
,
Long
L
,
Zheng
W
, et al.
Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy
.
Nature
.
2019
;
576
(
7787
):
471
-
476
.
doi:10.1038/s41586-019-1821-z
.
59.
Carnevale
J
,
Shifrut
E
,
Kale
N
, et al.
RASA2 ablation in T cells boosts antigen sensitivity and long-term function
.
Nature
.
2022
;
609
(
7925
):
174
-
182
.
doi:10.1038/s41586-022-05126-w
.
60.
Fraietta
JA
,
Nobles
CL
,
Sammons
MA
, et al.
Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells
.
Nature
.
2018
;
558
(
7709
):
307
-
312
.
doi:10.1038/s41586-018-0178-z
.
61.
Prinzing
B
,
Zebley
CC
,
Petersen
CT
, et al.
Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity
.
Sci Transl Med
.
2021
;
13
(
620
):
eabh0272
.
doi:10.1126/scitranslmed.abh0272
.
62.
Jain
N
,
Zhao
Z
,
Feucht
J
, et al.
TET2 guards against unchecked BATF3- induced CAR T cell expansion
.
Nature
.
2023
;
615
(
7951
):
315
-
322
.
doi:10.1038/s41586-022-05692-z
.
63.
Rafiq
S
,
Hackett
CS
,
Brentjens
RJ
.
Engineering strategies to overcome the current roadblocks in CAR T cell therapy
.
Nat Rev Clin Oncol
.
2020
;
17
(
3
):
147
-
167
.
doi:10.1038/s41571-019-0297-y
.
You do not currently have access to this content.