Hemoglobin S (HbS) polymerization, red blood cell (RBC) sickling, chronic anemia, and vaso-occlusion are core to sickle cell disease (SCD) pathophysiology. Pyruvate kinase (PK) activators are a novel class of drugs that target RBC metabolism by reducing the buildup of the glycolytic intermediate 2,3-diphosphoglycerate (2,3-DPG) and increasing production of adenosine triphosphate (ATP). Lower 2,3-DPG level is associated with an increase in oxygen affinity and reduction in HbS polymerization, while increased RBC ATP may improve RBC membrane integrity and survival. There are currently 3 PK activators in clinical development for SCD: mitapivat (AG-348), etavopivat (FT-4202), and the second-generation molecule AG-946. Preclinical and clinical data from these 3 molecules demonstrate the ability of PK activators to lower 2,3-DPG levels and increase ATP levels in animal models and patients with SCD, as well as influence a number of potential pathways in SCD, including hemoglobin oxygen affinity, RBC sickling, RBC deformability, RBC hydration, inflammation, oxidative stress, hypercoagulability, and adhesion. Furthermore, early-phase clinical trials of mitapivat and etavopivat have demonstrated the safety and tolerability of PK activators in patients with SCD, and phase 2/3 trials for both drugs are ongoing. Additional considerations for this novel therapeutic approach include the balance between increasing hemoglobin oxygen affinity and tissue oxygen delivery, the cost and accessibility of these drugs, and the potential of multimodal therapy with existing and novel therapies targeting different disease mechanisms in SCD.

1.
Xu
JZ
,
Thein
SL
.
Revisiting anemia in sickle cell disease and finding the balance with therapeutic approaches
.
Blood
.
2022
;
139
(
20
):
3030
-
3039
.
doi:10.1182/blood.2021013873
.
2.
Hijmans
CT
,
Grootenhuis
MA
,
Oosterlaan
J
,
Heijboer
H
,
Peters
M
,
Fijnvandraat
K.
Neurocognitive deficits in children with sickle cell disease are associated with the severity of anemia
.
Pediatr Blood Cancer
.
2011
;
57
(
2
):
297
-
302
.
doi:10.1002/pbc.22892
.
3.
Ataga
KI
,
Gordeuk
VR
,
Agodoa
I
,
Colby
JA
,
Gittings
K
,
Allen
IE
.
Low hemoglobin increases risk for cerebrovascular disease, kidney disease, pulmonary vasculopathy, and mortality in sickle cell disease: a systematic literature review and meta-analysis
.
PLoS One
.
2020
;
15
(
4
):
e0229959
.
doi:10.1371/journal.pone.0229959
.
4.
Swanson
ME
,
Grosse
SD
,
Kulkarni
R.
Disability among individuals with sickle cell disease: literature review from a public health perspective
.
Am J Prev Med
.
2011
;
41
(
6, suppl 4
):
S390
-
7
.
doi:10.1016/j.amepre.2011.09.006
.
5.
Anderson
LM
,
Allen
TM
,
Thornburg
CD
,
Bonner
MJ
.
Fatigue in children with sickle cell disease: association with neurocognitive and social-emotional functioning and quality of life
.
J Pediatr Hematol Oncol
.
2015
;
37
(
8
):
584
-
589
.
doi:10.1097/MPH.0000000000000431
.
6.
Serjeant
G.
Blood transfusion in sickle cell disease: a cautionary tale
.
Lancet
.
2003
;
361
(
9369
):
1659
-
1660
.
doi:10.1016/S0140-6736(03)13293-X
.
7.
Rackoff
WR
,
Ohene-Frempong
K
,
Month
S
,
Scott
JP
,
Neahring
B
,
Cohen
AR
.
Neurologic events after partial exchange transfusion for priapism in sickle cell disease
.
J Pediatr
.
1992
;
120
(
6
):
882
-
885
.
doi:10.1016/s0022-3476(05)81954-7
.
8.
Royal
JE
,
Seeler
RA
.
Hypertension, convulsions, and cerebral haemorrhage in sickle-cell anaemia patients after blood-transfusions
.
Lancet
.
1978
;
2
(
8101
):
1207
.
doi:10.1016/s0140-6736(78)92193-1
.
9.
Baum
KF
,
Dunn
DT
,
Maude
GH
,
Serjeant
GR
.
The painful crisis of homozygous sickle cell disease. A study of the risk factors
.
Arch Intern Med
.
1987
;
147
(
7
):
1231
-
1234
.
doi:10.1001/archinte.1987.00370070045007
.
10.
Platt
OS
,
Thorington
BD
,
Brambilla
DJ
, et al.
Pain in sickle cell disease. Rates and risk factors
.
N Engl J Med
.
1991
;
325
(
1
):
11
-
16
.
doi:10.1056/NEJM199107043250103
.
11.
Ataga
KI
,
Reid
M
,
Ballas
SK
, et al.
Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043)
.
Br J Haematol
.
2011
;
153
(
1
):
92
-
104
.
doi:10.1111/j.1365-2141.2010.08520.x
.
12.
Goldberg
MA
,
Brugnara
C
,
Dover
GJ
,
Schapira
L
,
Charache
S
,
Bunn
HF
.
Treatment of sickle cell anemia with hydroxyurea and erythropoietin
.
N Engl J Med
.
1990
;
323
(
6
):
366
-
372
.
doi:10.1056/NEJM199008093230602
.
13.
Little
JA
,
McGowan
VR
,
Kato
GJ
,
Partovi
KS
,
Feld
JJ
,
Maric
I
,
Martyr
S
,
Taylor
JG
,
Machado
RF
,
Heller
T
,
Castro
O
,
Gladwin
MT
.
Combination erythropoietin-hydroxyurea therapy in sickle cell disease: experience from the National Institutes of Health and a literature review
.
Haematologica
.
2006
;
91
(
8
):
1076
-
1083
.
14.
Nagel
RL
,
Vichinsky
E
,
Shah
M
, et al.
F reticulocyte response in sickle cell anemia treated with recombinant human erythropoietin: a double-blind study
.
Blood
.
1993
;
81
(
1
):
9
-
14
. https://www.ncbi.nlm.nih.gov/pubmed/8417806.
15.
Rodgers
GP
,
Dover
GJ
,
Uyesaka
N
,
Noguchi
CT
,
Schechter
AN
,
Nienhuis
AW
.
Augmentation by erythropoietin of the fetal-hemoglobin response to hydroxyurea in sickle cell disease
.
N Engl J Med
.
1993
;
328
(
2
):
73
-
80
.
doi:10.1056/NEJM199301143280201
.
16.
Vichinsky
E
,
Hoppe
CC
,
Ataga
KI
, et al.
A phase 3 randomized trial of voxelotor in sickle cell disease
.
N Engl J Med
.
2019
;
381
(
6
):
509
-
519
.
doi:10.1056/NEJMoa1903212
.
17.
Steinberg
MH
,
Benz
EJ
,
Ebert
BL
.
Pathobiology of the human erythrocyte and its hemoglobins
. In:
Hoffman
R
,
Benz
E
,
Silberstein
LE
, et al
, eds.
Hematology: Basic Principles and Practice
. 8th ed.
Elsevier
;
2023
:
451
-
462
.
18.
Hoffman
JF
.
Erythrocyte ATP, a possible therapeutic approach for sickle cell disease
.
Am J Hematol
.
2019
;
94
(
5
):
E117
.
doi:10.1002/ajh.25419
.
19.
Al-Samkari
H
,
Van Beers
EJ
,
Kuo
KHM
, et al.
The variable manifestations of disease in pyruvate kinase deficiency and their management
.
Haematologica
.
2020
;
105
(
9
):
2229
-
2239
.
doi:10.3324/haematol.2019.240846
.
20.
Charache
S
,
Grisolia
S
,
Fiedler
AJ
,
Hellegers
AE
.
Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia
.
J Clin Invest
.
1970
;
49
(
4
):
806
-
812
.
doi:10.1172/JCI106294
.
21.
Jensen
M
,
Shohet
SB
,
Nathan
DG
.
The role of red cell energy metabolism in the generation of irreversibly sickled cells in vitro
.
Blood
.
1973
;
42
(
6
):
835
-
842
. https://www.ncbi.nlm.nih.gov/pubmed/4202454.
22.
Rab
MAE
,
Bos
J
,
van Oirschot
BA
, et al.
Decreased activity and stability of pyruvate kinase in sickle cell disease: a novel target for mitapivat therapy
.
Blood
.
2021
;
137
(
21
):
2997
-
3001
.
doi:10.1182/blood.2020008635
.
23.
Alli
N
,
Coetzee
M
,
Louw
V
, et al.
Sickle cell disease in a carrier with pyruvate kinase deficiency
.
Hematology
.
2008
;
13
(
6
):
369
-
372
.
doi:10.1179/102453308X343536
.
24.
Cohen-Solal
M
,
Prehu
C
,
Wajcman
H
, et al.
A new sickle cell disease phenotype associating Hb S trait, severe pyruvate kinase deficiency (PK Conakry), and an alpha2 globin gene variant (Hb Conakry)
.
Br J Haematol
.
1998
;
103
(
4
):
950
-
956
. https://www.ncbi.nlm.nih.gov/pubmed/9886305.
25.
Wang
X
,
Gardner
K
,
Tegegn
MB
, et al.
Genetic variants of PKLR are associated with acute pain in sickle cell disease
.
Blood Adv
.
2022
;
6
(
11
):
3535
-
3540
.
doi:10.1182/bloodadvances.2021006668
.
26.
Israelsen
WJ
,
Vander Heiden
MG
.
Pyruvate kinase: function, regulation and role in cancer
.
Semin Cell Dev Biol
.
2015
;
43
:
43
-
51
.
doi:10.1016/j.semcdb.2015.08.004
.
27.
Al-Samkari
H
,
Galacteros
F
,
Glenthoj
A
, et al.
Mitapivat versus placebo for pyruvate kinase deficiency
.
N Engl J Med
.
2022
;
386
(
15
):
1432
-
1442
.
doi:10.1056/NEJMoa2116634
.
28.
Quezado
ZMN
,
Kamimura
S
,
Smith
M
, et al.
Mitapivat increases ATP and decreases oxidative stress and erythrocyte mitochondria retention in a SCD mouse model
.
Blood Cells Mol Dis
.
2022
;
95
:
102660
.
doi:10.1016/j.bcmd.2022.102660
.
29.
Xu
JZ
,
Conrey
A
,
Frey
I
, et al.
A phase 1 dose escalation study of the pyruvate kinase activator mitapivat (AG-348) in sickle cell disease
.
Blood
.
2022
;
140
(
19
):
2053
-
2062
.
doi:10.1182/blood.2022015403
.
30.
van Dijk
MJ
,
Rab
MAE
,
van Oirschot
BA
, et al.
Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in sickle cell disease: a phase 2, open-label study
.
Am J Hematol
.
2022
;
97
(
7
):
E226
-
E229
.
doi:10.1002/ajh.26554
.
31.
Van Dijk
M
,
Rab
M
,
Van Oirschot
B
, et al.
One-year follow-up of a phase 2 study of mitapivat, an oral pyruvate kinase activator, for the treatment of sickle cell disease
.
HemaSphere
.
2023
;
7
(
suppl 3
):
9
-
10
.
doi:10.1097/01.HS9.0000872868.40573.13
.
32.
Shrestha
A
,
Chi
M
,
Wagner
K
, et al.
FT-4202, an oral PKR activator, has potent antisickling effects and improves RBC survival and Hb levels in SCA mice
.
Blood Adv
.
2021
;
5
(
9
):
2385
-
2390
.
doi:10.1182/bloodadvances.2020003604
.
33.
Schroeder
P
,
Fulzele
K
,
Forsyth
S
, et al.
Etavopivat, a pyruvate kinase activator in red blood cells, for the treatment of sickle cell disease
.
J Pharmacol Exp Ther
.
2022
;
380
(
3
):
210
-
219
.
doi:10.1124/jpet.121.000743
.
34.
Saraf
S
,
Brown
RC
,
Hagar
RW
, et al.
Etavopivat treatment for up to 12 weeks in patients with sickle cell disease was well tolerated and improved red blood cell health
.
HemaSphere
.
2022
;
6
(
suppl
):
1377
-
1378
.
35.
Kalfa
TA
,
Telen
MJ
,
Saraf
SL
, et al.
Etavopivat, an allosteric activator of pyruvate kinase-R, improves sickle RBC functional health and survival and reduces systemic markers of inflammation and hypercoagulability in patients with sickle cell disease: an analysis of exploratory studies in a phase 1 study
.
Blood
.
2021
;
138
(
suppl 1
):
8
.
doi:10.1182/blood-2021-147078
.
36.
Brown
RCC
,
Saraf
SL
,
Cruz
K
, et al.
Activation of pyruvate kinase-R with etavopivat (FT-4202) is well tolerated, improves anemia, and decreases intravascular hemolysis in patients with sickle cell disease treated for up to 12 weeks
.
Blood
.
2021
;
138
(
suppl 1
):
9
.
doi:10.1182/blood-2021-147091
.
37.
Gurov
XD
,
Merica
E
,
Iyer
V
, et al.
Results from the single and multiple ascending dose study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of AG-946 in healthy volunteers
.
Blood
.
2022
;
140
(
suppl 1
):
5426
-
5427
.
doi:10.1182/blood-2022-157719
.
38.
Jamwal
R
,
Wain
LC
,
Copeland
C
, et al.
AG-946 normalizes glycolysis and improves red cell indices in a humanized sickle cell mouse model
.
Blood
.
2022
;
140
(
suppl 1
):
950
-
951
.
doi:10.1182/blood-2022-156591
.
39.
Rab
M
,
Van Dijk
M
,
Bos
J
, et al.
Pharmacodynamic effects of AG-946, a highly potent novel activator of pyruvate kinase, in ex vivo treatment of red blood cells from sickle cell disease patients
.
Blood
.
2021
;
138
(
suppl 1
):
2029
.
doi:10.1182/blood-2021-145374
.
40.
Bunn
HF
.
Oxygen delivery in the treatment of anemia
.
N Engl J Med
.
2022
;
387
(
25
):
2362
-
2365
.
doi:10.1056/NEJMra2212266
.
41.
Hebbel
RP
,
Hedlund
BE
.
Sickle hemoglobin oxygen affinity-shifting strategies have unequal cerebrovascular risks
.
Am J Hematol
.
2018
;
93
(
3
):
321
-
325
.
doi:10.1002/ajh.24975
.
42.
Brothers
RO
,
Turrentine
KB
,
Akbar
M
, et al.
Cerebral metabolic stress improves after voxelotor treatment in pediatric sickle cell disease
.
Blood
.
2022
;
140
(
suppl 1
):
8296
-
8297
.
doi:10.1182/blood-2022-169025
.
43.
Konté
K
,
Baas
KPA
,
Afzali-Hashemi
L
, et al.
Effect of voxelotor on cerebral perfusion and cerebral oxygen metabolism in adult patients with sickle cell disease; preliminary results of the coverage study
.
Blood
.
2022
;
140
(
suppl 1
):
2535
-
2536
.
doi:10.1182/blood-2022-168997
.
44.
Grace
RF
,
Rose
C
,
Layton
DM
, et al.
Safety and efficacy of mitapivat in pyruvate kinase deficiency
.
N Engl J Med
.
2019
;
381
(
10
):
933
-
944
.
doi:10.1056/NEJMoa1902678
.
45.
Telen
MJ
,
Malik
P
,
Vercellotti
GM
.
Therapeutic strategies for sickle cell disease: towards a multi-agent approach
.
Nat Rev Drug Discov
.
2019
;
18
(
2
):
139
-
158
.
doi:10.1038/s41573-018-0003-2
.
You do not currently have access to this content.