Targeted immunotherapy has significantly improved the outcome of patients with hematological malignancies by leveraging the power of the immune system to eliminate tumor cells. In multiple myeloma (MM), bispecific T-cell engagers (BsAb) targeting B-cell maturation antigen (BCMA), G protein–coupled receptor, class C, group 5, member D (GPRC5D), and Fc receptor-like 5 (FcRL5) have already demonstrated remarkable clinical activity in triple-class refractory patients. However, responses to BsAb are not universal, and resistance often emerges while on therapy. Mechanisms mediating resistance are tumor intrinsic or immune dependent. Reported tumor intrinsic factors include antigenic loss (biallelic or functional) through deletions or mutations of target genes, increased soluble BCMA (for BCMA targeting BsAb), high tumor burden, and extramedullary disease. Immune-mediated resistance are largely dependent on T-cell fitness and tolerant immune environment. Understanding these mechanisms will allow the design of optimized BsAb therapy and an informed approach to sequencing and combining these molecules with other anti-MM agents and immune therapies.

1.
Munshi
NC
,
Anderson
LD
Jr
,
Shah
N
, et al.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2021
;
384
(
8
):
705
-
716
.
doi:10.1056/NEJMoa2024850
.
2.
Moreau
P
,
Garfall
AL
,
van de Donk
NWCJ
, et al.
Teclistamab in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2022
;
387
(
6
):
495
-
505
.
doi:10.1056/NEJMoa2203478
.
3.
Mailankody
S
,
Devlin
SM
,
Landa
J
, et al.
GPRC5D-targeted CAR T cells for myeloma
.
N Engl J Med
.
2022
;
387
(
13
):
1196
-
1206
.
doi:10.1056/NEJMoa2209900
.
4.
Chari
A
,
Minnema
MC
,
Berdeja
JG
, et al.
Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma
.
N Engl J Med
.
2022
;
387
(
24
):
2232
-
2244
.
doi:10.1056/NEJMoa2204591
.
5.
Bahlis
NJ
,
Tomasson
MH
,
Mohty
M
, et al.
Efficacy and safety of elranatamab in patients with relapsed/refractory multiple myeloma naïve to B-cell maturation antigen (BCMA)-directed therapies: results from cohort A of the MagnetisMM-3 study
.
Blood
.
2022
;
140
(
suppl 1
):
391
-
393
.
doi:10.1182/blood-2022-162440
.
6.
Berdeja
JG
,
Madduri
D
,
Usmani
SZ
, et al.
Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study
.
Lancet
.
2021
;
398
(
10297
):
314
-
324
.
doi:10.13039/100005205
.
7.
D'Souza
A
,
Shah
N
,
Rodriguez
C
, et al.
A phase I first-in-human study of ABBV'383, a B-cell maturation antigen × CD3 bispecific T-cell redirecting antibody, in patients with relapsed/refractory multiple myeloma
.
J Clin Oncol
.
2022
;
40
(
31
):
3576
-
3586
.
doi:10.1200/JCO.22.01504
.
8.
Trudel
S
,
Cohen
AD
,
Krishnan
AY
, et al.
Cevostamab monotherapy continues to show clinically meaningful activity and manageable safety in patients with heavily pre-treated relapsed/refractory multiple myeloma (RRMM): updated results from an ongoing phase I study
.
Blood
.
2021
;
138
(
suppl 1
):
157
.
doi:10.1182/blood-2021-147983
.
9.
Topp
MS
,
Duell
J
,
Zugmaier
G
, et al.
Anti-B-cell maturation antigen BiTE molecule AMG 420 induces responses in multiple myeloma
.
J Clin Oncol
.
2020
;
38
(
8
):
775
-
783
.
doi:10.1200/JCO.19.02657
.
10.
Lancman
G
,
Sastow
DL
,
Cho
HJ
, et al.
Bispecific antibodies in multiple myeloma: present and future
.
Blood Cancer Discov
.
2021
;
2
(
5
):
423
-
433
.
doi:10.1158/2643-3230.BCD-21-0028
.
11.
Gandhi
UH
,
Cornell
RF
,
Lakshman
A
, et al.
Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy
.
Leukemia
.
2019
;
33
(
9
):
2266
-
2275
.
doi:10.1038/s41375-019-0435-7
.
12.
Cortes-Selva
D
,
Casneuf
T
,
Vishwamitra
D
, et al.
Teclistamab, a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): correlative analyses from MajesTEC-1
.
Blood
.
2022
;
140
(
suppl 1
):
241
-
243
.
doi:10.1182/blood-2022-162709
.
13.
Raje
N
,
Bahlis
NJ
,
Costello
C
, et al.
Elranatamab, a BCMA targeted T-cell engaging bispecific antibody, induces durable clinical and molecular responses for patients with relapsed or refractory multiple myeloma
.
Blood
.
2022
;
140
(
suppl 1
):
388
-
390
.
doi: 10.1182/blood-2022-166494
.
14.
Wong
,
SW
,
Bar
N
,
Paris
L
, et al.
Alnuctamab (ALNUC; BMS-986349; CC-93269), a B-cell maturation antigen (BCMA) x CD3 T-cell engager (TCE), in patients (pts) with relapsed/refractory multiple myeloma (RRMM): results from a phase 1 first-in-human clinical study
.
Blood
.
2022
;
140
(
suppl 1
):
400
-
402
.
doi: 10.1182/blood-2022-159009
.
15.
Bumma
N
,
Richter
J
,
Brayer
J
, et al.
Updated safety and efficacy of REGN5458, a BCMAxCD3 bispecific antibody, treatment for relapsed/refractory multiple myeloma: a phase 1/2 first-in-human study
.
Blood
.
2022
;
140
(
suppl 1
):
10140
-
10141
.
doi:10.1182/blood-2022-159969
.
16.
Carlo-Stella
C
,
Mazza
R
,
Manier
S
, et al.
RG6234, a GPRC5DxCD3 T-cell engaging bispecific antibody, is highly active in patients (pts) with relapsed/refractory multiple myeloma (RRMM): updated intravenous (IV) and first subcutaneous (SC) results from a phase I dose-escalation study
.
Blood
.
2022
;
140
(
suppl 1
):
397
-
399
.
doi:10.1182/blood-2022-157988
.
17.
Cohen
AD
,
Mateos
M-V
,
Cohen
Y-C
, et al.
Efficacy and safety of cilta-cel in patients with progressive multiple myeloma after exposure to other BCMA-targeting agents
.
Blood
.
2023
;
141
(
3
):
219
-
230
.
doi:10.1182/blood.2022015526
.
18.
Hansen
DK
,
Sidana
S
,
Peres
LC
, et al.
Idecabtagene vicleucel for relapsed/refractory multiple myeloma: real-world experience from the myeloma CAR T consortium
.
J Clin Oncol
.
2023
;
41
(
11
):
2087
-
2097
.
doi:10.1200/JCO.22.01365
.
19.
Touzeau
C
,
Krishnan
AY
,
Moreau
P
, et al.
Efficacy and safety of teclistamab (tec), a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in patients (pts) with relapsed/refractory multiple myeloma (RRMM) after exposure to other BCMA-targeted agents
.
J Clin Oncol
.
2022
;
40
(
16_suppl
):
8013
.
doi:10.1200/jco.2022.40.16_suppl.8013
.
20.
van der Leun
AM
,
Thommen
DS
,
Schumacher
TN
.
CD8+ T cell states in human cancer: insights from single-cell analysis
.
Nat Rev Cancer
.
2020
;
20
(
4
):
218
-
232
.
doi:10.1038/s41568-019-0235-4
.
21.
Leblay
N
,
Maity
R
,
Hasan
F
,
Neri
P
.
Deregulation of adaptive T cell immunity in multiple myeloma: insights into mechanisms and therapeutic opportunities
.
Front Oncol
.
2020
;
10
:
636
.
doi:10.3389/fonc.2020.00636
.
22.
Suen
H
,
Brown
R
,
Yang
S
, et al.
Multiple myeloma causes clonal T-cell immunosenescence: identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade
.
Leukemia
.
2016
;
30
(
8
):
1716
-
1724
.
doi:10.1038/leu.2016.84
.
23.
Minnie
SA
,
Kuns
RD
,
Gartlan
KH
, et al.
Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade
.
Blood
.
2018
;
132
(
16
):
1675
-
1688
.
doi:10.1182/blood-2018-01-825240
.
24.
Zelle-Rieser
C
,
Thangavadivel
S
,
Biedermann
R
, et al.
T cells in multiple myeloma display features of exhaustion and senescence at the tumor site
.
J Hematol Oncol
.
2016
;
9
(
1
):
116
.
doi:10.1186/s13045-016-0345-3
.
25.
Friedrich
MJ
,
Neri
P
,
Kehl
N
, et al.
The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients
.
Cancer Cell
.
2023
;
41
(
4
):
711
-
725.e6725e6
.
doi:10.1016/j.ccell.2023.02.008
.
26.
Neri
P
,
Ahn
S
,
Lee
S
, et al.
Dysfunctional hyper-expanded clonotypes and lack of TCR clonal replacement predict resistance to T cell engagers in multiple myeloma
.
Blood
.
2022
;
140
(
Suppl 1
):
2093
-
2094
.
doi:10.1182/blood-2022-164717
.
27.
Philipp
N
,
Kazerani
M
,
Nicholls
A
, et al.
T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals
.
Blood
.
2022
;
140
(
10
):
1104
-
1118
.
doi:10.1182/blood.2022015956
.
28.
Cho
S-F
,
Yeh
T-J
,
Anderson
K-C
,
Tai
Y-T
.
Bispecific antibodies in multiple myeloma treatment: a journey in progress
.
Front Oncol
.
2022
;
12
:
1032775
.
doi:10.3389/fonc.2022
.
29.
Nakamura
K
,
Kassem
S
,
Cleynen
A
, et al.
Dysregulated IL-18 is a key driver of immunosuppression and a possible therapeutic target in the multiple myeloma microenvironment
.
Cancer Cell
.
2018
;
33
(
4
):
634
-
648
. e5648e5.
doi:10.13039/100007428
.
30.
Cho
S-F
,
Lin
L
,
Xing
L
, et al.
The immunomodulatory drugs lenalidomide and pomalidomide enhance the potency of AMG 701 in multiple myeloma preclinical models
.
Blood Adv
.
2020
;
4
(
17
):
4195
-
4207
.
doi:10.1182/bloodadvances.2020002524
.
31.
Frerichs
KA
,
Broekmans
MEC
,
Marin Soto
JA
, et al.
Preclinical activity of JNJ-7957, a novel BCMA × CD3 bispecific antibody for the treatment of multiple myeloma, is potentiated by daratumumab
.
Clin Cancer Res
.
2020
;
26
(
9
):
2203
-
2215
.
doi:10.1158/1078-0432.CCR-19-2299
.
32.
Truger
MS
,
Duell
J
,
Zhou
X
, et al.
Single- and double-hit events in genes encoding immune targets before and after T cell–engaging antibody therapy in MM
.
Blood Adv
.
2021
;
5
(
19
):
3794
-
3798
.
doi:10.1182/bloodadvances.2021004418
.
33.
Da Vià
MC
,
Dietrich
O
,
Truger
M
, et al.
Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma
.
Nat Med
.
2021
;
27
(
4
):
616
-
619
.
doi:10.13039/501100005972
.
34.
Samur
MK
,
Fulciniti
M
,
Aktas Samur
A
, et al.
Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma
.
Nat Commun
.
2021
;
12
(
1
):
868
.
doi:10.1038/s41467-021-21177-5
.
35.
Leblay
N
,
Maity
R
,
Barakat
E
, et al.
Cite-seq profiling of T cells in multiple myeloma patients undergoing BCMA targeting CAR-T or bites immunotherapy
.
Blood
.
2020
;
136
(
suppl 1
):
1
-
12
.
doi:10.1182/blood-2020-137650
.
36.
Lee
H
,
Maity
R
,
Leblay
N
, et al.
Mechanisms of antigen escape from BCMA- or GPRC5D- targeted immunotherapies in multiple myeloma
.
Nature Medicine
.
2023
:In press.
37.
Middelburg
J
,
Kemper
K
,
Engelberts
P
,
Labrijn
AF
,
Schuurman
J
,
van Hall
T
.
Overcoming challenges for CD3-bispecific antibody therapy in solid tumors
.
Cancers (Basel)
.
2021
;
13
(
2
).
doi:10.3390/cancers13020287
.
38.
Hipp
S
,
Tai
Y-T
,
Blanset
D
, et al.
A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo
.
Leukemia
.
2017
;
31
(
8
):
1743
-
1751
.
doi:10.1038/leu.2016.388
.
39.
Chen
H
,
Yu
T
,
Lin
L
, et al.
γ-secretase inhibitors augment efficacy of BCMA-targeting bispecific antibodies against multiple myeloma cells without impairing T-cell activation and differentiation
.
Blood Cancer J
.
2022
;
12
(
8
):
118
.
doi:10.1038/s41408-022-00716-3
.
40.
Meermeier
EW
,
Welsh
SJ
,
Sharik
ME
, et al.
Tumor burden limits bispecific antibody efficacy through T cell exhaustion averted by concurrent cytotoxic therapy
.
Blood Cancer Discov
.
2021
;
2
(
4
):
354
-
369
.
doi:10.1158/2643-3230.BCD-21-0038
.
41.
Hansen
JD
,
Correa
M
,
Nagy
MA
, et al.
Discovery of CRBN E3 ligase modulator CC-92480 for the treatment of relapsed and refractory multiple myeloma
.
J Med Chem
.
2020
;
63
(
13
):
6648
-
6676
.
doi:10.1021/acs.jmedchem.9b01928
.
42.
Gaffney
B
,
Shi
Y
,
de Jong
P
, et al.
Mezigdomide (CC-92480), a novel cereblon E3 ligase modulator, induces vulnerability of multiple myeloma cells to T-cell-mediated killing
.
Blood
.
2022
;
140
(
suppl 1
):
7108
-
7109
.
doi:10.1182/blood-2022-157939
.
You do not currently have access to this content.