Among the variety of resistance mechanisms that may underlie a non-optimal response to tyrosine kinase inhibitor (TKI) therapy in chronic myeloid leukemia patients, secondary point mutations in the BCR::ABL1 kinase domain (KD) represent the only actionable one. Each of the 5 ATP-competitive inhibitors (imatinib, dasatinib, nilotinib, bosutinib, ponatinib) has a well-defined spectrum of resistance mutations. Growing clinical experience will soon allow to also elucidate the full spectrum of mutations conferring resistance to asciminib (that appear not to be confined to the myristate binding pocket). Regular molecular response (MR) monitoring is fundamental for evaluating treatment efficacy, catching early signs of relapse, and intervening promptly in case of confirmed failure. Whenever MR is not deemed satisfactory according to the European LeukemiaNet or the National Comprehensive Cancer Network definitions, BCR::ABL1 KD mutations testing should be performed. When needed, prompt and informed TKI switch can improve response and outcome and prevent the accumulation of mutations, including highly challenging compound mutations. Novel technologies like next-generation sequencing and digital polymerase chain reaction have recently been explored for BCR::ABL1 KD mutation testing; they have both advantages and disadvantages that are discussed in this article. This review also provides suggestions for interpretation and clinical translation of mutation testing results, which may not always be straightforward, particularly in cases of low-level or unknown mutations.

1.
Hochhaus
A
,
Baccarani
M
,
Silver
RT
, et al.
European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia
.
Leukemia
.
2020
;
34
(
4
):
966
-
984
.
doi:10.1038/s41375-020-0776-2
.
2.
National Comprehensive Cancer Network
.
NCCN guidelines for the treatment of chronic myeloid leukemia
. v2.2023. . Accessed
May
3
,
2023
.
3.
Copland
M.
Treatment of blast phase chronic myeloid leukaemia: a rare and challenging entity
.
Br J Haematol
.
2022
;
199
(
5
):
665
-
678
.
doi:10.1111/bjh.18370
.
4.
Branford
S
,
Yeung
DT
,
Prime
JA
, et al.
BCR-ABL1 doubling times more reliably assess the dynamics of CML relapse compared with the BCR-ABL1 fold rise: implications for monitoring and management
.
Blood
.
2012
;
119
(
18
):
4264
-
4271
.
doi:10.1182/blood-2011-11-393041
.
5.
Soverini
S
,
Martelli
M
,
Bavaro
L
, et al.
BCR-ABL1 compound mutants: prevalence, spectrum and correlation with tyrosine kinase inhibitor resistance in a consecutive series of Philadelphia chromosome-positive leukemia patients analyzed by NGS
.
Leukemia
.
2021
;
35
(
7
):
2102
-
2107
.
doi:10.1038/s41375-020-01098-w
.
6.
Poláková
KM
,
Polívková
V
,
Rulcová
J
, et al.
Constant BCR-ABL transcript level >or = 0.1% (IS) in patients with CML responding to imatinib with complete cytogenetic remission may indicate mutation analysis
.
Exp Hematol
.
2010
;
38
(
1
):
20
-
26
.
doi:10.1016/j.exphem.2009.10.003
.
7.
Wylie
AA
,
Schoepfer
J
,
Jahnke
W
, et al.
The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1
.
Nature
.
2017
;
543
(
7647
):
733
-
737
.
doi:10.1038/nature21702
.
8.
Gibbons
DL
,
Pricl
S
,
Posocco
P
, et al.
Molecular dynamics reveal BCR-ABL1 polymutants as a unique mechanism of resistance to PAN-BCR-ABL1 kinase inhibitor therapy
.
Proc Natl Acad Sci USA
.
2014
;
111
(
9
):
3550
-
3555
.
doi:10.1073/pnas.1321173111
.
9.
Zabriskie
MS
,
Eide
CA
,
Tantravahi
SK
, et al.
BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia
.
Cancer Cell
.
2014
;
26
(
3
):
428
-
442
.
doi:10.1016/j.ccr.2014.07.006
.
10.
Byrgazov
K
,
Lucini
CB
,
Valent
P
,
Hantschel
O
,
Lion
T.
BCR-ABL1 compound mutants display differential and dose-dependent responses to ponatinib
.
Haematologica
.
2018
;
103
(
1
):
e10
-
e12
.
doi:10.3324/haematol.2017.176347
.
11.
Eide
CA
,
Zabriskie
MS
,
Savage Stevens
SL
, et al.
Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants
.
Cancer Cell
.
2019
;
36
(
4
):
431
-
443.e5
.
doi:10.13039/100010638
.
12.
Schmitt
MW
,
Pritchard
JR
,
Leighow
SM
, et al.
Single-molecule sequencing reveals patterns of preexisting drug resistance that suggest treatment strategies in Philadelphia-positive leukemias
.
2018
;
24
(
21
):
5321
-
5334
.
doi:10.13039/100000002
.
13.
Gleixner
KV
,
Filik
Y
,
Berger
D
, et al.
Asciminib and ponatinib exert synergistic anti-neoplastic effects on CML cells expressing BCR-ABL1 T315I-compound mutations
.
Am J Cancer Res
.
2021
;
11
(
9
):
4470
-
doi
:10.13039/0133715.4484
.
14.
Schneeweiss-Gleixner
M
,
Byrgazov
K
,
Stefanzl
G
, et al.
CDK4/CDK6 inhibition as a novel strategy to suppress the growth and survival of BCR-ABL1T315I+ clones in TKI-resistant CML
.
EBioMedicine
.
2019
;
50
(
S1
):
111
-
121
.
doi:10.13039/100004336
.
15.
Soverini
S
,
Hochhaus
A
,
Nicolini
FE
, et al.
BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet
.
Blood
.
2011
;
118
(
5
):
1208
-
1215
.
doi:10.1182/blood-2010-12-326405
.
16.
Soverini
S
,
De Benedittis
C
,
Machova Polakova
K
, et al.
Unraveling the complexity of tyrosine kinase inhibitor-resistant populations by ultra-deep sequencing of the BCR-ABL kinase domain
.
Blood
.
2013
;
122
(
9
):
1634
-
1648
.
doi:10.1182/blood-2013-03-487728
.
17.
Machova Polakova
K
,
Kulvait
V
,
Benesova
A
, et al.
Next-generation deep sequencing improves detection of BCR-ABL1 kinase domain mutations emerging under tyrosine kinase inhibitor treatment of chronic myeloid leukemia patients in chronic phase
.
J Cancer Res Clin Oncol
.
2015
;
141
(
5
):
887
-
899
.
doi:10.1007/s00432-014-1845-6
.
18.
Baer
C
,
Kern
W
,
Koch
S
, et al.
Ultra-deep sequencing leads to earlier and more sensitive detection of the tyrosine kinase inhibitor resistance mutation T315I in chronic myeloid leukemia
.
Haematologica
.
2016
;
101
(
7
):
830
-
838
.
doi:10.3324/haematol.2016.145888
.
19.
Kizilors
A
,
Crisà
E
,
Lea
N
, et al.
Effect of low-level BCR-ABL1 kinase domain mutations identified by next-generation sequencing in patients with chronic myeloid leukaemia: a population-based study
.
Lancet Haematol
.
2019
;
6
(
5
):
e276
-
e284
.
doi:10.1016/s2352-3026(19)30027-4
.
20.
Soverini
S
,
Bavaro
L
,
De Benedittis
C
, et al.
Prospective assessment of NGS-detectable mutations in CML patients with nonoptimal response: the NEXT-in-CML study
.
Blood
.
2020
;
135
(
8
):
534
-
541
.
doi:10.1182/blood.2019002969
.
21.
Deininger
MW
,
Hodgson
JG
,
Shah
NP
, et al.
Compound mutations in BCR-ABL1 are not major drivers of primary or secondary resistance to ponatinib in CP-CML patients
.
Blood
.
2016
;
127
(
6
):
703
-
712
.
doi:10.1182/blood-2015-08-660977
.
22.
Parker
WT
,
Phillis
SR
,
Yeung
DT
,
Hughes
TP
,
Scott
HS
,
Branford
S.
Many BCR-ABL1 compound mutations reported in chronic myeloid leukemia patients may actually be artifacts due to PCR-mediated recombination
.
Blood
.
2014
;
124
(
1
):
153
-
155
.
doi:10.1182/blood-2014-05-573485
.
23.
Parker
WT
,
Lawrence
RM
,
Ho
M
, et al.
Sensitive detection of BCR-ABL1 mutations in patients with chronic myeloid leukemia after imatinib resistance is predictive of outcome during subsequent therapy
.
J Clin Oncol
.
2011
;
29
(
32
):
4250
-
4259
.
doi:10.1200/JCO.2011.35.0934
.
24.
Soverini
S
,
De Santis
S
,
Martelli
M
, et al.
Droplet digital PCR for the detection of second-generation tyrosine kinase inhibitor-resistant BCR::ABL1 kinase domain mutations in chronic myeloid leukemia
.
Leukemia
.
2022
;
36
(
9
):
2250
-
2260
.
doi:10.1038/s41375-022-01660-8
.
25.
Polivkova
V
,
Benesova
A
,
Zizkova
H
, et al.
Sensitivity and reliability of DNA-based mutation analysis by allele-specific digital PCR to follow resistant BCR-ABL1-positive cells
.
Leukemia
.
2021
;
35
(
8
):
2419
-
2423
.
doi:10.1038/s41375-021-01226-0
.
26.
Redaelli
S
,
Mologni
L
,
Rostagno
R
, et al.
Three novel patient-derived BCR/ABL mutants show different sensitivity to second and third generation tyrosine kinase inhibitors
.
Am J Hematol
.
2012
;
87
(
11
):
e125
-
e128
.
doi:10.1002/ajh.23338
.
27.
Soverini
S
,
Gnani
A
,
Colarossi
S
, et al.
Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors
.
Blood
.
2009
;
114
(
10
):
2168
-
2171
.
doi:10.1182/blood-2009-01-197186
.
28.
Qiang
W
,
Antelope
O
,
Zabriskie
MS
, et al.
Mechanisms of resistance to the BCR-ABL1 allosteric inhibitor asciminib
.
Leukemia
.
2017
;
31
(
12
):
2844
-
2847
.
doi:10.1038/leu.2017.264
.
29.
Hughes
TP
,
Mauro
MJ
,
Cortes
JE
, et al.
Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure
.
N Engl J Med
.
2019
;
381
(
24
):
2315
-
2326
.
doi:10.13039/100004336
.
30.
Mauro
MJ
,
Hughes
TP
,
Kim
D-W
, et al.
Asciminib monotherapy in patients with CML-CP without BCR::ABL1 T315I mutations treated with at least two prior TKIs: 4-year phase 1 safety and efficacy results
.
Leukemia
.
2023
;
37
(
5
):
1048
-
1059
.
doi:10.1038/s41375-023-01860-w
.
31.
Hochhaus
A
,
Réa
D
,
Boquimpani
C
, et al.
Asciminib vs bosutinib in chronic-phase chronic myeloid leukemia previously treated with at least two tyrosine kinase inhibitors: longer-term follow-up of ASCEMBL
.
Leukemia
.
2023
;
37
(
3
):
617
-
626
.
doi:10.13039/100008272
.
32.
Cortes
JE
,
Hughes
TP
,
Mauro
MJ
, et al.
Asciminib, a first-in-class STAMP inhibitor, provides durable molecular response in patients (pts) with chronic myeloid leukemia (CML) harboring the T315I mutation: primary efficacy and safety results from a phase 1 trial
.
Blood
.
2020
;
136
(
suppl 1
):
47
-
50
.
doi:10.1182/blood-2020-139677
.
You do not currently have access to this content.