Sickle cell disease (SCD) is potentially curable after allogeneic hematopoietic stem cell transplantation (HSCT) or autologous HSCT after ex vivo genetic modification. Autologous HSCT with gene therapy has the potential to overcome many of the limitations of allogeneic HSCT that include the lack of suitable donors, graft-versus-host disease, the need for immune suppression, and the potential for graft rejection. Significant progress in gene therapy for SCD has been made over the past several decades, now with a growing number of clinical trials investigating various gene addition and gene editing strategies. Available results from a small number of patients, some with relatively short follow-up, are promising as a potentially curative strategy, with current efforts focused on continuing to improve the efficacy, durability, and safety of gene therapies for the cure of SCD.

1.
Piel
FB
,
Hay
SI
,
Gupta
S
,
Weatherall
DJ
,
Williams
TN
.
Global burden of sickle cell anaemia in children under five, 2010-2050: modelling based on demographics, excess mortality, and interventions
.
PLoS Med
.
2013
;
10
(
7
):
e1001484
.
doi:10.1371/journal.pmed.1001484
.
2.
Tisdale
JF
,
Thein
SL
,
Eaton
WA
.
Treating sickle cell anemia
.
Science
.
2020
;
367
(
6483
):
1198
-
1199
.
doi:10.1126/science.aba3827
.
3.
Lanzkron
S
,
Carroll
CP
,
Haywood
C.
Mortality rates and age at death from sickle cell disease: U.S., 1979–2005
.
Public Health Rep
.
2013
;
128
(
2
):
110
-
116
.
doi:10.1177/003335491312800206
.
4.
Rogers
S
,
Pfuderer
P.
Use of viruses as carriers of added genetic information
.
Nature
.
1968
;
219
(
5155
):
749
-
751
.
doi:10.1038/219749a0
.
5.
Mercola
KE
,
Cline
MJ
.
Sounding boards. The potentials of inserting new genetic information
.
N Engl J Med
.
1980
;
303
(
22
):
1297
-
1300
.
doi:10.1056/NEJM198011273032211
.
6.
Rosenberg
SA
,
Aebersold
P
,
Cornetta
K
, et al.
Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction
.
N Engl J Med
.
1990
;
323
(
9
):
570
-
578
.
doi:10.1056/NEJM199008303230904
.
7.
Boztug
K
,
Schmidt
M
,
Schwarzer
A
, et al.
Stem-cell gene therapy for the Wiskott-Aldrich syndrome
.
N Engl J Med
.
2010
;
363
(
20
):
1918
-
1927
.
doi:10.1056/NEJMoa1003548
.
8.
Braun
CJ
,
Boztug
K
,
Paruzynski
A
, et al.
Gene therapy for Wiskott- Aldrich syndrome—long-term efficacy and genotoxicity
.
Sci Transl Med
.
2014
;
6
(
227
):
227ra33
.
doi:10.1126/scitranslmed.3007280
.
9.
Hacein-Bey-Abina
S
,
Garrigue
A
,
Wang
GP
, et al.
Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1
.
J Clin Invest
.
2008
;
118
(
9
):
3132
-
3142
.
doi:10.1172/JCI35700
.
10.
Chandrakasan
S
,
Malik
P.
Gene therapy for hemoglobinopathies: the state of the field and the future
.
Hematol Oncol Clin North Am
.
2014
;
28
(
2
):
199
-
216
.
doi:10.1016/j.hoc.2013.12.003
.
11.
May
C
,
Rivella
S
,
Callegari
J
, et al.
Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin
.
Nature
.
2000
;
406
(
6791
):
82
-
86
.
doi:10.1038/35017565
.
12.
May
C
,
Rivella
S
,
Chadburn
A
,
Sadelain
M.
Successful treatment of murine beta-thalassemia intermedia by transfer of the human beta-globin gene
.
Blood
.
2002
;
99
(
6
):
1902
-
1908
.
doi:10.1182/blood.v99.6.1902
.
13.
Pawliuk
R
,
Westerman
KA
,
Fabry
ME
, et al.
Correction of sickle cell disease in transgenic mouse models by gene therapy
.
Science
.
2001
;
294
(
5550
):
2368
-
2371
.
doi:10.1126/science.1065806
.
14.
Levasseur
DN
,
Ryan
TM
,
Pawlik
KM
,
Townes
TM
.
Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells
.
Blood
.
2003
;
102
(
13
):
4312
-
4319
.
doi:10.1182/blood-2003-04-1251
.
15.
Jinek
M
,
Chylinski
K
,
Fonfara
I
,
Hauer
M
,
Doudna
JA
,
Charpentier
E.
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
.
Science
.
2012
;
337
(
6096
):
816
-
821
.
doi:10.1126/science.1225829
.
16.
Cavazzana-Calvo
M
,
Payen
E
,
Negre
O
, et al.
Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia
.
Nature
.
2010
;
467
(
7313
):
318
-
322
.
doi:10.1038/nature09328
.
17.
Ribeil
J-A
,
Hacein-Bey-Abina
S
,
Payen
E
, et al.
Gene therapy in a patient with sickle cell disease
.
N Engl J Med
.
2017
;
376
(
9
):
848
-
855
.
doi:10.1056/NEJMoa1609677
.
18.
Thompson
AA
,
Walters
MC
,
Kwiatkowski
J
, et al.
Gene therapy in patients with transfusion-dependent β-thalassemia
.
N Engl J Med
.
2018
;
378
(
16
):
1479
-
1493
.
doi:10.1056/NEJMoa1705342
.
19.
Locatelli
F
,
Thompson
AA
,
Kwiatkowski
JL
, et al.
Betibeglogene autotemcel gene therapy for non-beta(0)/beta(0) genotype beta-thalassemia
.
N Engl J Med
.
2022
;
386
(
5
):
415
-
427
.
doi:10.1056/NEJMoa2113206
.
20.
Kanter
J
,
Thompson
AA
,
Pierciey
FJ
Jr
, et al.
Lovo-cel gene therapy for sickle cell disease: treatment process evolution and outcomes in the initial groups of the HGB-206 study
.
Am J Hematol
.
2023
;
98
(
1
):
11
-
22
.
doi:10.1002/ajh.26741
.
21.
Uchida
N
,
Leonard
A
,
Stroncek
D
, et al.
Safe and efficient peripheral blood stem cell collection in patients with sickle cell disease using plerixafor
.
Haematologica
.
2020
;
105
(
10
):
e497
.
doi:10.3324/haematol.2019.236182
.
22.
Boulad
F
,
Shore
T
,
van Besien
K
, et al.
Safety and efficacy of plerixafor dose escalation for the mobilization of CD34+ hematopoietic progenitor cells in patients with sickle cell disease: interim results
.
Haematologica
.
2018
;
103
(
5
):
770
-
777
.
doi:10.3324/haematol.2017.187047
.
23.
Esrick
EB
,
Manis
JP
,
Daley
H
, et al.
Successful hematopoietic stem cell mobilization and apheresis collection using plerixafor alone in sickle cell patients
.
Blood Adv
.
2018
;
2
(
19
):
2505
-
2512
.
doi:10.1182/bloodadvances.2018016725
.
24.
Lagresle-Peyrou
C
,
Lefrère
F
,
Magrin
E
, et al.
Plerixafor enables safe, rapid, efficient mobilization of hematopoietic stem cells in sickle cell disease patients after exchange transfusion
.
Haematologica
.
2018
;
103
(
5
):
778
-
786
.
doi:10.3324/haematol.2017.184788
.
25.
Kanter
J
,
Walters
MC
,
Krishnamurti
L
, et al.
Biologic and clinical efficacy of LentiGlobin for sickle cell disease
.
N Engl J Med
.
2022
;
386
(
7
):
617
-
628
.
doi:10.1056/NEJMoa2117175
.
26.
Esrick
EB
,
Lehmann
LE
,
Biffi
A
, et al.
Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease
.
N Engl J Med
.
2021
;
384
(
3
):
205
-
215
.
doi:10.1056/NEJMoa2029392
.
27.
Hsieh
MM
,
Bonner
M
,
Pierciey
FJ
, et al.
Myelodysplastic syndrome unrelated to lentiviral vector in a patient treated with gene therapy for sickle cell disease
.
Blood Adv
.
2020
;
4
(
9
):
2058
-
2063
.
doi:10.1182/bloodadvances.2019001330
.
28.
Goyal
S
,
Tisdale
J
,
Schmidt
M
, et al.
Acute myeloid leukemia case after gene therapy for sickle cell disease
.
N Engl J Med
.
2022
;
386
(
2
):
138
-
147
.
doi:10.1056/NEJMoa2109167
.
29.
Jones
RJ
,
DeBaun
MR
.
Leukemia after gene therapy for sickle cell disease: insertional mutagenesis, busulfan, both, or neither
.
Blood
.
2021
;
138
(
11
):
942
-
947
.
doi:10.1182/blood.2021011488
.
30.
Leonard
A
,
Tisdale
JF
.
A pause in gene therapy: reflecting on the unique challenges of sickle cell disease
.
Mol Ther
.
2021
;
29
(
4
):
1355
-
1356
.
doi:10.1016/j.ymthe.2021.03.010
.
31.
Seminog
OO
,
Ogunlaja
OI
,
Yeates
D
,
Goldacre
MJ
.
Risk of individual malignant neoplasms in patients with sickle cell disease: English national record linkage study
.
J R Soc Med
.
2016
;
109
(
8
):
303
-
309
.
doi:10.1177/0141076816651037
.
32.
Brunson
A
,
Keegan
THM
,
Bang
H
,
Mahajan
A
,
Paulukonis
S
,
Wun
T.
Increased risk of leukemia among sickle cell disease patients in California
.
Blood
.
2017
;
130
(
13
):
1597
-
1599
.
doi:10.1182/blood-2017-05-783233
.
33.
Pincez
T
,
Lee
SSK
,
Ilboudo
Y
, et al.
Clonal hematopoiesis in sickle cell disease
.
Blood
.
2021
;
138
(
21
):
2148
-
2152
.
doi:10.1182/blood.2021011121
.
34.
Lee
B-C
,
Lozano
R-J
,
Dunbar
C-E
.
Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells
.
Mol Ther
.
2021
;
29
(
11
):
3205
-
3218
.
doi:10.1016/j.ymthe.2021.09.001
.
35.
Cradick
TJ
,
Fine
EJ
,
Antico
CJ
,
Bao
G.
CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity
.
Nucleic Acids Res
.
2013
;
41
(
20
):
9584
-
9592
.
doi:10.1093/nar/gkt714
.
36.
AlJanahi
AA
,
Lazzarotto
CR
,
Chen
S
, et al.
Prediction and validation of hematopoietic stem and progenitor cell off-target editing in transplanted rhesus macaques
.
Mol Ther
.
2022
;
30
(
1
):
209
-
222
.
doi:10.1016/j.ymthe.2021.06.016
.
37.
Leibowitz
ML
,
Papathanasiou
S
,
Doerfler
PA
, et al.
Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing
.
Nat Genet
.
2021
;
53
(
6
):
895
-
905
.
doi:10.1038/s41588-021-00838-7
.
38.
Schiroli
G
,
Conti
A
,
Ferrari
S
, et al.
Precise gene editing preserves hematopoietic stem cell function following transient p53-mediated DNA damage response
.
Cell Stem Cell
.
2019
;
24
(
4
):
551
-
565.e8565e8
.
doi:10.1016/j.stem.2019.02.019
.
39.
Haapaniemi
E
,
Botla
S
,
Persson
J
,
Schmierer
B
,
Taipale
J.
CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response
.
Nat Med
.
2018
;
24
(
7
):
927
-
930
.
doi:10.1038/s41591-018-0049-z
.
40.
Enache
OM
,
Rendo
V
,
Abdusamad
M
, et al.
Cas9 activates the p53 pathway and selects for p53-inactivating mutations
.
Nat Genet
.
2020
;
52
(
7
):
662
-
668
.
doi:10.1038/s41588-020-0623-4
.
41.
Graphite Bio announces voluntary pause of phase 1/2 CEDAR study of nulabeglogene autogedtemcel (nula-cel) for sickle cell disease
. https://ir.graphitebio.com/press-releases/detail/84/graphitebio-announces-voluntary-pause-of-phase-12-cedar. Accessed
5
May
2023
.
42.
Frangoul
H
,
Locatelli
F
,
Bhatia
M
, et al.
Efficacy and safety of a single dose of exagamglogene autotemcel for severe sickle cell disease
.
Blood
.
2022
;
140
(
suppl 1
):
29
-
31
.
doi:10.1182/blood-2022-162353
43.
Kingwell
,
K.
First CRISPR therapy seeks landmark approval
.
Nat Rev Drug Discov
.
2023
;
22
(
5
):
339
-
341
. Accessed
5
May
2023
.
44.
Alavi
A
,
Krishnamurti
L
,
Abedi
M
, et al.
Preliminary safety and efficacy results from Precizn-1: an ongoing phase 1/2 study on zinc finger nuclease- modified autologous CD34+ HSPCs for sickle cell disease (SCD)
.
Blood
.
2021
;
138
(
suppl 1
):
2930
.
45.
Alavi
A
,
Abedi
M
,
Parikh
S
, et al.
Interim safety and efficacy results from a phase 1/2 study of zinc finger nuclease-modified autologous hematopoietic stem cells for sickle cell disease (PRECIZN-1)
.
Blood
.
2022
;
140
(
suppl 1
):
4907
-
4909
.
doi:10.1182/blood-2022-163725
46.
Sharma
A
,
Boelens
JJ
,
Cancio
MI
, et al.
Treatment of individuals with severe sickle cell disease with OTQ923, an autologous, ex vivo, CRISPR/Cas9- edited, CD34+ hematopoietic stem and progenitor cell product, leads to durable engraftment and fetal hemoglobin induction
.
Blood
.
2022
;
140
(
suppl 1
):
1906
-
1908
.
doi:10.1182/blood-2022-166254
.
47.
Intellia Therapeutics
.
Intellia Therapeutics announces fourth quarter and full-year 2022 financial results and highlights recent company progress
.
2023
. https://ir.intelliatx.com/news-releases/news-release-details/intellia-therapeutics-announces-fourth-quarter-and-full-year-5. Accessed
5
May
2023
.
48.
Leonard
A
,
Sharma
A
,
Uchida
N
, et al.
Disease severity impacts plerixafor-mobilized stem cell collection in patients with sickle cell disease
.
Blood Adv
.
2021
;
5
(
9
):
2403
-
2411
.
doi:10.1182/bloodadvances.2021004232
.
49.
Czechowicz
A
,
Palchaudhuri
R
,
Scheck
A
, et al.
Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation
.
Nat Commun
.
2019
;
10
(
1
):
617
.
doi:10.1038/s41467-018-08201-x
.
50.
Chhabra
A
,
Ring
AM
,
Weiskopf
K
, et al.
Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy
.
Sci Transl Med
.
2016
;
8
(
351
):
351ra105
.
doi:10.1126/scitranslmed.aae0501
.
51.
Kwon
H-S
,
Logan
A-C
,
Chhabra
A
, et al.
Anti-human CD117 antibody- mediated bone marrow niche clearance in nonhuman primates and humanized NSG mice
.
Blood
.
2019
;
133
(
19
):
2104
-
2108
.
doi:10.1182/blood-2018-06-853879
.
52.
Mondal
N
,
Harmon
A
,
Budak
E
, et al.
Engineered Stem Cell Antibody Paired Evasion 1 (ESCAPE-1): paired HSC epitope engineering and upregulation of fetal hemoglobin for antibody-mediated autologous hematopoietic stem cell therapy conditioning for the treatment of hemoglobinopathies
.
Blood
.
2022
;
140
(
suppl 1
):
4487
-
4488
.
doi:10.1182/blood-2022-169120
.
53.
Chu
SH
,
Budak
E
,
Mondal
N
, et al.
Engineered Stem Cell Antibody Paired Evasion-2 (ESCAPE-2): paired HSC epitope engineering and direct editing of sickle allele for antibody-mediated autologous hematopoietic stem cell therapy conditioning for the treatment of sickle cell disease
.
Blood
.
2022
;
140
(
suppl 1
):
10213
-
10214
.
doi:10.1182/blood-2022-169257
.
54.
Li
C
,
Wang
H
,
Georgakopoulou
A
,
Gil
S
,
Yannaki
E
,
Lieber
A.
In vivo HSC gene therapy using a bi-modular HDAd5/35++ vector cures sickle cell disease in a mouse model
.
Mol Ther
.
2021
;
29
(
2
):
822
-
837
.
doi:10.1016/j.ymthe.2020.09.001
.
55.
Bradt
P SE
,
Synnott
PG
,
Chapman
R
,
Beinfeld
M
,
Rind
DM
,
Pearson
SD
.
Crizanlizumab, voxelotor, and L-glutamine for sickle cell disease: effectiveness and value
. Institute for Clinical and Economic Review.
January
23
,
2020
. https://icer.org/wp-content/uploads/2020/10/ICER_SCD_Evidence-Report_031220-FOR-PUBLICATION.pdf. Accessed
5
May
2023
.
56.
Coquerelle
S
,
Ghardallou
M
,
Rais
S
, et al.
Innovative curative treatment of beta thalassemia: cost-efficacy analysis of gene therapy versus allogenic hematopoietic stem-cell transplantation
.
Hum Gene Ther
.
2019
;
30
(
6
):
753
-
761
.
doi:10.1089/hum.2018.178
.
57.
Gillmore
JD
,
Gane
E
,
Taubel
J
, et al.
CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis
.
N Engl J Med
.
2021
;
385
(
6
):
493
-
502
.
doi:10.1056/NEJMoa2107454
.
58.
Banda
O
,
Alameh
M-G
,
Jung
S
,
Weissman
D
,
Rivella
S
,
Kurre
P.
Direct delivery of mRNA-loaded lipid nanoparticles to the hematopoietic stem cell niche
.
Blood
.
2022
;
140
(
suppl 1
):
4923
-
4924
.
doi:10.1182/blood-2022-159085
.
59.
Li
C
,
Georgakopoulou
A
,
Newby
GA
, et al.
In vivo HSC prime editing rescues sickle cell disease in a mouse model
.
Blood
.
2023
;
141
(
17
):
2085
-
2099
.
doi:10.1182/blood.2022018252
.
You do not currently have access to this content.