Patient- and leukemia-specific factors assessed at diagnosis classify patients with acute myeloid leukemia (AML) in risk categories that are prognostic for outcome. The induction phase with intensive chemotherapy in fit patients aims to reach a complete remission (CR) of less than 5% blasts in bone marrow by morphology. To deepen and sustain the response, induction is followed by consolidation treatment. This postremission treatment of patients with AML is graduated in intensity based on this favorable, intermediate, or adverse risk group classification as defined in the European Leukemia Network (ELN) 2022 recommendations. The increment of evidence that measurable residual disease (MRD) after induction can be superimposed on risk group at diagnosis is instrumental in tailoring further treatment accordingly. Several techniques are applied to detect MRD such as multiparameter flow cytometry (MFC), quantitative (digital) polymerase chain reaction (PCR), and next-generation sequencing. The clinical implementation of MRD and the technique used differ among institutes, leading to the accumulation of a wide range of data, and therefore harmonization is warranted. Currently, evidence for MRD guidance is limited to the time point after induction using MFC or quantitative PCR for NPM1 and core binding factor abnormalities in intermediate-risk patients. The role of MRD in targeted or nonintensive therapies needs to be clarified, although some data show improved survival in patients achieving CR-MRD negativity. Potential application of MRD for selection of conditioning before stem cell transplantation, monitoring after consolidation, and use as an intermediate end point in clinical trials need further evaluation.

1.
Arber
DA
,
Orazi
A
,
Hasserjian
RP
, et al.
International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data
.
Blood
.
2022
;
140
(
11
):
1200
-
1228
.
doi:10.1182/blood.2022015850.
2.
Döhner
H
,
Wei
AH
,
Appelbaum
FR
, et al.
Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN
.
Blood
.
2022
;
140
(
12
):
1345
-
1377
.
doi: 10.1182/blood.2022016867
.
3.
Loke
J
,
McCarthy
N
,
Jackson
AE
, et al.
Posttransplant MRD and T-cell chimerism status predict outcomes in patients allografted with AML/MDS
.
Blood Adv
.
2023
Jul 25;
7
(
14
):
3666
-
3676
.
doi:10.1182/bloodadvances.2022009493
.
4.
Gutman
JA
.
How can we intervene to mitigate post-transplantation relapse in AML? Strategies to mitigate post-transplantation relapse in AML
.
Best Pract Res Clin Haematol
.
2022
;
35
(
4
):
101411
.
doi:10.1016/j.beha.2022.101411
.
5.
Odak
I
,
Sikora
R
,
Riemann
L
, et al.
Spectral flow cytometry cluster analysis of therapeutic donor lymphocyte infusions identifies T cell subsets associated with outcome in patients with AML relapse
.
Front Immunol
.
2022
;
13
:999163.
doi:10.3389/fimmu.2022.999163
.
6.
Stone
RM
,
Mandrekar
SJ
,
Sanford
BL
, et al.
Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation
.
N Engl J Med
.
2017
;
377
(
5
):
454
-
464
.
doi:10.1056/NEJMoa1614359
.
7.
Cornelissen
JJ
,
Blaise
D.
Hematopoietic stem cell transplantation for patients with AML in first complete remission
.
Blood
.
2016
;
127
(
1
):
62
-
70
.
doi:10.1182/blood-2015-07-604546
.
8.
Heuser
M
,
Freeman
SD
,
Ossenkoppele
GJ
, et al.
2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party
.
Blood
.
2021
;
138
(
26
):
2753
-
2767
.
doi:10.1182/blood.2021013626
.
9.
Krigstein
M
,
Iland
HJ
,
Wei
AH
.
Applying molecular measurable residual disease testing in acute myeloid leukaemia
.
Pathology
.
2023
;
55
(
1
):
1
-
7
.
doi:10.1016/j.pathol.2022.11.003
.
10.
Thol
F
,
Kölking
B
,
Damm
F
, et al.
Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations
.
Genes Chromosom Cancer
.
2012
;
51
(
7
):
689
-
695
.
doi:10.1002/gcc.21955
.
11.
Levis
MJ
,
Perl
AE
,
Altman
JK
, et al.
A next-generation sequencing-based assay for minimal residual disease assessment in AML patients with FLT3-ITD mutations
.
Blood Adv
.
2018
;
2
(
8
):
825
-
831
.
doi:10.1182/bloodadvances.2018015925
.
12.
Blätte
TJ
,
Schmalbrock
LK
,
Skambraks
S
, et al.
getITD for FLT3-ITD-based MRD monitoring in AML
.
Leukemia
.
2019
;
33
(
10
):
2535
-
2539
.
doi:10.1038/s41375-019-0483-z
.
13.
Tettero
JM
,
Freeman
S
,
Buecklein
V
, et al.
Technical aspects of flow cytometry- based measurable residual disease quantification in acute myeloid leukemia: experience of the European LeukemiaNet MRD Working Party
.
Hemasphere
.
2022
;
6
(
1
):
e676
.
doi:10.1097/HS9.0000000000000676
.
14.
Jongen-Lavrencic
M
,
Grob
T
,
Hanekamp
D
, et al.
Molecular minimal residual disease in acute myeloid leukemia
.
N Engl J Med
.
2018
;
378
(
13
):
1189
-
1199
.
doi:10.13039/501100001826
.
15.
Dillon
LW
,
Gui
G
,
Page
KM
, et al.
DNA sequencing to detect residual disease in adults with acute myeloid leukemia prior to hematopoietic cell transplant
.
JAMA
.
2023
;
329
(
9
):
745
-
755
.
doi:10.1001/jama.2023.1363
.
16.
Heuser
M
,
Heida
B
,
Büttner
K
, et al.
Posttransplantation MRD monitoring in patients with AML by next-generation sequencing using DTA and non-DTA mutations
.
Blood Adv
.
2021
;
5
(
9
):
2294
-
2304
.
doi:10.1182/bloodadvances.2021004367
.
17.
Wood
BL
.
Acute myeloid leukemia minimal residual disease detection: the difference from normal approach
.
Curr Protoc Cytom
.
2020
;
93
(
1
):
e73
.
doi:10.1002/cpcy.73
.
18.
Tettero
JM
,
Al-Badri
WKW
,
Ngai
LL
, et al.
Concordance in measurable residual disease result after first and second induction cycle in acute myeloid leukemia: an outcome- and cost-analysis
.
Front Oncol
.
2022
;
12
:999822.
doi:10.3389/fonc.2022.999822
.
19.
Zhang
C
,
Gu
R
,
Zhou
C
, et al.
Prognostic effect and clinical application of early measurable residual disease (MRD) by flow cytometry on de novo acute myeloid leukemia (AML)
.
Blood
.
2022
;
140
(
suppl 1
):
2030
-
2032
.
doi:10.1182/blood-2022-162459
.
20.
Venditti
A
,
Piciocchi
A
,
Candoni
A
, et al.
GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia
.
Blood
.
2019
;
134
(
12
):
935
-
945
.
doi:10.1182/blood.2018886960
.
21.
Löwenberg
B
,
Pabst
T
,
Maertens
J
, et al.
Addition of lenalidomide to intensive treatment in younger and middle-aged adults with newly diagnosed AML: the HOVON-SAKK-132 trial
.
Blood Adv
.
2021
;
5
(
4
):
1110
-
1121
.
doi:10.1182/bloodadvances.2020003855
.
22.
Tettero
JM
,
Ngai
LL
,
Bachas
C
, et al.
Measurable residual disease-guided therapy in intermediate-risk acute myeloid leukemia patients is a valuable strategy in reducing allogeneic transplantation without negatively affecting survival [published online April 6, 2023]
.
Haematologica
.
doi:10.3324/haematol.2022.282639
.
23.
Grob
T
,
Sanders
MA
,
Vonk
CM
, et al.
Prognostic value of FLT3-internal tandem duplication residual disease in acute myeloid leukemia
.
J Clin Oncol
.
2023
;
41
(
4
):
756
-
765
.
doi:10.1200/JCO.22.00715
.
24.
Tiong
IS
,
Dillon
R
,
Ivey
A
, et al.
Clinical impact of NPM1-mutant molecular persistence after chemotherapy for acute myeloid leukemia
.
Blood Adv
.
2021
;
5
(
23
):
5107
-
5111
.
doi:10.1182/bloodadvances.2021005455
.
25.
Patel
SS
.
NPM1-mutated acute myeloid leukemia: recent developments and open questions [published online March 21, 2023]
.
Pathobiology
.
doi:10.1159/000530253
.
26.
Loo
S
,
Dillon
R
,
Ivey
A
, et al.
Pretransplant FLT3-ITD MRD assessed by high-sensitivity PCR-NGS determines posttransplant clinical outcome
.
Blood
.
2022
;
140
(
22
):
2407
-
2411
.
doi:10.1182/blood.2022016567
.
27.
Erba
HP
,
Montesinos
P
,
Kim
HJ
, et al.
Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): a randomised, double-blind, placebo-controlled, phase 3 trial
.
Lancet
.
2023
;
401
(
10388
):
1571
-
1583
.
doi:10.1016/S0140-6736(23)00464-6
.
28.
El Chaer
F
,
Hourigan
CS
,
Zeidan
AM
.
How I treat AML incorporating the updated classifications and guidelines
.
Blood
.
2023
;
141
(
23
):
2813
-
2823
.
doi:10.1182/blood.2022017808
.
29.
DeZern
AE
,
Sung
A
,
Kim
S
, et al.
Role of allogeneic transplantation for FLT3/ITD acute myeloid leukemia: outcomes from 133 consecutive newly diagnosed patients from a single institution
.
Biol Blood Marrow Transplant
.
2011
;
17
(
9
):
1404
-
1409
.
doi:10.1016/j.bbmt.2011.02.003
.
30.
Döhner
K
,
Thiede
C
,
Jahn
N
, et al.
Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia
.
Blood
.
2020
;
135
(
5
):
371
-
380
.
doi:10.1182/blood.2019002697
.
31.
Levis
MJ
,
Hamadan
M
,
Logan
B
, et al.
BMT-CTN 1506 (MORPHO): a randomized trial of the FLT3 inhibitor gilteritinib as post-transplant maintenance for FLT3-ITD AML
.
EHA Libr
.
2023
;391322:LB2711.
32.
Zeijlemaker
W
,
Kelder
A
,
Oussoren-Brockhoff
YJM
, et al.
Peripheral blood minimal residual disease may replace bone marrow minimal residual disease as an immunophenotypic biomarker for impending relapse in acute myeloid leukemia
.
Leukemia
.
2016
;
30
(
3
):
708
-
715
.
doi:10.1038/leu.2015.255
.
33.
Maurillo
L
,
Buccisano
F
,
Spagnoli
A
, et al.
Monitoring of minimal residual disease in adult acute myeloid leukemia using peripheral blood as an alternative source to bone marrow
.
Haematologica
.
2007
;
92
(
5
):
605
-
611
.
doi:10.3324/haematol.10432
.
34.
Paras
G
,
Morsink
LM
,
Othus
M
, et al.
Conditioning intensity and peritransplant flow cytometric MRD dynamics in adult AML
.
Blood
.
2022
;
139
(
11
):
1694
-
1706
.
doi:10.1182/blood.2021014804
.
35.
Shahswar
R
,
Beutel
G
,
Gabdoulline
R
, et al.
Fludarabine, cytarabine and idarubicin with or without venetoclax in patients with relapsed/refractory acute myeloid leukemia [published online July 20, 2023]
.
Haematologica
.
doi:10.3324/haematol.2023.282912
.
36.
Ngai
LL
,
Kelder
A
,
Janssen
JJWM
,
Ossenkoppele
GJ
,
Cloos
J.
MRD tailored therapy in AML: what we have learned so far
.
Front Oncol
.
2021
;
10
:603636.
doi:10.3389/fonc.2020.603636
.
37.
Short
NJ
,
Zhou
S
,
Fu
C
, et al.
Association of measurable residual disease with survival outcomes in patients with acute myeloid leukemia: a systematic review and meta-analysis
.
JAMA Oncol
.
2020
;
6
(
12
):
1890
-
1899
.
doi:10.1001/jamaoncol.2020.4600
.
38.
Hanekamp
D
,
Ngai
LL
,
Janssen
JJWM
, et al.
Early assessment of clofarabine effectiveness based on measurable residual disease, including AML stem cells
.
Blood
.
2021
;
137
(
12
):
1694
-
1697
.
doi:10.1182/blood.2020007150
.
39.
Van de Loosdrecht
AA
,
Cloos
J
,
Wagner-Drouet
E-M
, et al.
Induction of a systemic immune response during use of an allogenic leukemia-derived dendritic cell vaccine in MRD+ AML patients correlates with clinical response and MRD conversion
.
Blood
.
2022
;
140
(
suppl 1
):
3410
-
3411
.
doi:10.1182/blood-2022-163116
.
40.
Hanekamp
D
,
Snel
AN
,
Kelder
A
, et al.
Applicability and reproducibility of acute myeloid leukaemia stem cell assessment in a multi-centre setting
.
Br J Haematol
.
2020
;
190
(
6
):
891
-
900
.
41.
Zeijlemaker
W
,
Grob
T
,
Meijer
R
, et al.
CD34+CD38- leukemic stem cell frequency to predict outcome in acute myeloid leukemia
.
Leukemia
.
2019
;
33
(
5
):
1102
-
1112
.
doi:10.1038/s41375-018-0326-3
.
42.
Plesa
A
,
Dumontet
C
,
Mattei
E
, et al.
High frequency of CD34+CD38-/low immature leukemia cells is correlated with unfavorable prognosis in acute myeloid leukemia
.
World J Stem Cells
.
2017
;
9
(
12
):
227
-
234
.
doi:10.4252/wjsc.v9.i12.227
.
43.
Ngai
LL
,
Hanekamp
D
,
Janssen
F
, et al.
Prospective validation of the prognostic relevance of CD34+CD38- AML stem cell frequency in the HOVON- SAKK132 trial
.
Blood
.
2023
;
141
(
21
):
2657
-
2661
.
doi:10.1182/blood.2022019160
.
44.
Li
SQ
,
Xu
LP
,
Wang
Y
, et al.
An LSC-based MRD assay to complement the traditional MFC method for prediction of AML relapse: a prospective study
.
Blood
.
2022
;
140
(
5
):
516
-
520
.
doi:10.1182/blood.2021014604
.
45.
Jaramillo
S
,
Schlenk
RF
.
Update on current treatments for adult acute myeloid leukemia: to treat acute myeloid leukemia intensively or non-intensively? That is the question
.
Haematologica
.
2023
;
108
(
2
):
342
-
352
.
doi:10.3324/haematol.2022.280802
.
46.
Pratz
KW
,
Jonas
BA
,
Pullarkat
V
, et al.
Measurable residual disease response and prognosis in treatment-naïve acute myeloid leukemia with venetoclax and azacitidine
.
J Clin Oncol
.
2022
;
40
(
8
):
855
-
865
.
doi:10.1200/JCO.21.01546
.
47.
Ong
SY
,
Tan Si Yun
M
,
Abdul Halim
NA
, et al.
Real-world experience of measurable residual disease response and prognosis in acute myeloid leukemia treated with venetoclax and azacitidine
.
Cancers (Basel)
.
2022
;
14
(
15
):
3576
.
doi:10.3390/cancers14153576
.
48.
Röhnert
MA
,
Kramer
M
,
Schadt
J
, et al.
Reproducible measurable residual disease detection by multiparametric flow cytometry in acute myeloid leukemia
.
Leukemia
.
2022
;
36
(
9
):
2208
-
2217
.
doi:10.1038/s41375-022-01647-5
.
49.
Han
L
,
Li
Y
,
Wu
J
, et al.
Post-remission measurable residual disease directs treatment choice and improves outcomes for patients with intermediate-risk acute myeloid leukemia in CR1
.
Int J Hematol
.
2022
;
116
(
6
):
892
-
901
.
doi:10.1007/s12185-022-03441-6
.
50.
Hourigan
CS
,
Dillon
LW
,
Gui
G
, et al.
Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease
.
J Clin Oncol
.
2020
;
38
(
12
):
1273
-
1283
.
doi:10.1200/JCO.19.03011
.
51.
Boyiadzis
M
,
Zhang
M-J
,
Chen
K
, et al.
Impact of pre-transplant induction and consolidation cycles on AML allogeneic transplant outcomes: a CIBMTR analysis in 3113 AML patients
.
Leukemia
.
2023
;
37
(
5
):
1006
-
1017
.
doi:10.1038/s41375-022-01738-3
.
52.
Gilleece
MH
,
Labopin
M
,
Yakoub-Agha
I
, et al.
Measurable residual disease, conditioning regimen intensity, and age predict outcome of allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first remission: a registry analysis of 2292 patients by the Acute Leukemia Working Party European Society of Blood and Marrow Transplantation
.
Am J Hematol
.
2018
;
93
(
9
):
1142
-
1152
.
doi:10.1002/ajh.25211
.
53.
Chang
YJ
,
Wang
Y
,
Liu
YR
, et al.
Haploidentical allograft is superior to matched sibling donor allograft in eradicating pre-transplantation minimal residual disease of AML patients as determined by multiparameter flow cytometry: a retrospective and prospective analysis
.
J Hematol Oncol
.
2017
;
10
(
1
):
134
.
doi:10.1186/s13045-017-0502-3
.
54.
Senapati
J
,
Abuasab
T
,
Haddad
FG
, et al.
Common kinase mutations do not impact optimal molecular responses in core binding factor acute myeloid leukemia treated with fludarabine, cytarabine, and G-CSF based regimens
.
Am J Hematol
.
2023
;
98
(
3
):
E53
-
E56
.
doi:10.1002/ajh.26811
.
55.
Liang
EC
,
Chen
C
,
Lu
R
,
Mannis
GN
,
Muffly
L.
Measurable residual disease status and FLT3 inhibitor therapy in patients with FLT3-ITD mutated AML following allogeneic hematopoietic cell transplantation
.
Bone Marrow Transplant
.
2021
;
56
(
12
):
3091
-
3093
.
doi:10.1038/s41409-021-01475-8
.
56.
Platzbecker
U
,
Middeke
JM
,
Sockel
K
, et al.
Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): an open-label, multicentre, phase 2 trial
.
Lancet Oncol
.
2018
;
19
(
12
):
1668
-
1679
.
doi:10.1016/S1470-2045(18)30580-1
.
57.
Malagola
M
,
Polverelli
N
,
Beghin
A
, et al.
Bone marrow CD34+ molecular chimerism as an early predictor of relapse after allogeneic stem cell transplantation in patients with acute myeloid leukemia
.
Front Oncol
.
2023
;
13
:1133418.
doi:10.3389/fonc.2023.1133418
.
58.
Bazinet
A
,
Kadia
T
,
Short
NJ
, et al.
Undetectable measurable residual disease is associated with improved outcomes in AML irrespective of treatment intensity
.
Blood Adv
.
2023
;
7
(
13
):
3284
-
3296
.
doi:10.1182/bloodadvances.2022009391
.
59.
Huls
G
,
Chitu
DA
,
Pabst
T
, et al.
Ibrutinib added to 10-day decitabine for older patients with AML and higher risk MDS
.
Blood Adv
.
2020
;
4
(
18
):
4267
-
4277
.
doi:10.1182/bloodadvances.2020002846
.
60.
Wei
AH
,
Iland
HJ
,
Reynolds
J
, et al.
ALLG AMLM26 phase 1B/2 study investigating novel therapies to target early relapse and clonal evolution as pre-emptive therapy IN AML (INTERCEPT): a multi-arm, precision-based, recursive, platform trial
.
Blood
.
2022
;
140
(
suppl 1
):
3341
-
3343
.
doi:10.1182/blood-2022-167837
.
61.
Little
RF
,
Othus
M
,
Assouline
S
, et al.
Umbrella trial in myeloid malignancies: the myelomatch national clinical trials network precision medicine initiative
.
Blood
.
2022
;
140
(
suppl 1
):
9057
-
9060
.
doi:10.1182/blood-2022-169307
.
You do not currently have access to this content.