Autologous CAR-T cell therapy (CAR-T) has improved outcomes for patients with B-cell malignancies. It is associated with the well-described canonical toxicities cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), which may be abrogated by corticosteroids and the anti-IL6 receptor antagonist tocilizumab. Practitioners and researchers should be aware of additional toxicities. Here we review current understanding and management of hematologic toxicities after CAR-T, including cytopenias, coagulopathies, bleeding and clotting events, hemophagocytic-lymphohistiocytosis, and tumor lysis syndrome. We pay particular attention to cytopenias, recently termed immune effector cell-associated hematological toxicity (ICAHT). While the “H” is silent, hematotoxicity is not: ICAHT has the highest cumulative incidence of all immune adverse events following CAR-T. Early cytopenia (day 0-30) is closely linked to lymphodepleting chemotherapy and CRS-related inflammatory stressors. Late ICAHT (after day 30) can present either with or without antecedent count recovery (e.g., “intermittent” vs “aplastic” phenotype), and requires careful evaluation and management strategies. Growth factor support is the mainstay of treatment, with recent evidence demonstrating safety and feasibility of early granulocyte colony-stimulating factor (G-CSF) (e.g., within week 1). In G-CSF refractory cases, autologous stem cell boosts represent a promising treatment avenue, if available. The CAR-HEMATOTOX scoring system, validated for use across lymphoid malignancies (B-NHL, multiple myeloma), enables pretherapeutic risk assessment and presents the potential for risk-adapted management. Recent expert panels have led to diagnostic scoring criteria, severity grading systems, and management strategies for both ICAHT and the recently termed immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome (IEC-HS), now clarified and defined as a distinct entity from CRS.

1.
Locke
FL
,
Miklos
DB
,
Jacobson
CA
, et al.
Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma
.
N Engl J Med
.
2022
;
386
(
7
):
640
-
654
.
doi:10.1056/NEJMoa2116133.
2.
Abramson
JS
,
Solomon
SR
,
Arnason
J
, et al.
Lisocabtagene maraleucel as second-line therapy for large B-cell lymphoma: primary analysis of the phase 3 TRANSFORM study
.
Blood
.
2023
;
141
(
14
):
1675
-
1684
.
doi:10.1182/blood.2022018730.
3.
Shah
BD
,
Ghobadi
A
,
Oluwole
OO
, et al.
KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study
.
Lancet
.
2021
;
398
(
10299
):
491
-
502
.
doi:10.1016/S0140-6736(21)01222-8.
4.
Wang
M
,
Munoz
J
,
Goy
A
, et al.
KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma
.
N Engl J Med
.
2020
;
382
(
14
):
1331
-
1342
.
doi:10.1056/NEJMoa1914347.
5.
Raje
N
,
Berdeja
J
,
Lin
Y
, et al.
Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2019
;
380
(
18
):
1726
-
1737
.
doi:10.1056/NEJMoa1817226.
6.
Snowden
JA
,
Sanchez-Ortega
I
,
Corbacioglu
S
, et al.
Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022
.
Bone Marrow Transplant
.
2022
;
57
(
8
):
1217
-
1239
.
doi:10.1038/s41409-022-01691-w.
7.
Passweg
JR
,
Baldomero
H
,
Chabannon
C
, et al.
Hematopoietic cell transplantation and cellular therapy survey of the EBMT: monitoring of activities and trends over 30 years
.
Bone Marrow Transplant
.
2021
;
56
(
7
):
1651
-
1664
.
doi:10.1038/s41409-021-01227-8.
8.
Rejeski
K
,
Perez
A
,
Sesques
P
, et al.
CAR-HEMATOTOX: a model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma
.
Blood
.
2021
;
138
(
24
):
2499
-
2513
.
doi:10.1182/blood.2020010543.
9.
Rejeski
K
,
Subklewe
M
,
Aljurf
M
, et al
.
Immune effector cell-associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations
.
Blood
.
2023
;
142
(
10
):
865
-
877
.
doi:10.1136/jitc-2022-006406.
10.
Hill
JA
,
Li
D
,
Hay
KA
, et al.
Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy
.
Blood
.
2018
;
131
(
1
):
121
-
130
.
doi:10.1182/blood-2017-07-793760.
11.
Rejeski
K
,
Perez
A
,
Iacoboni
G
, et al.
The CAR-HEMATOTOX risk-stratifies patients for severe infections and disease progression after CD19 CAR-T in R/R LBCL
.
J Immunother Cancer
.
2022
;
10
(
5
).
doi:10.1136/jitc-2021-004475
.
12.
Jain
T
,
Olson
TS
,
Locke
FL
.
How I treat cytopenias after CAR T-cell therapy
.
Blood
.
2023
;
141
(
20
):
2460
-
2469
.
doi:10.1182/blood.2022017415.
13.
Cordeiro
A
,
Bezerra
ED
,
Hirayama
AV
, et al.
Late events after treatment with CD19-targeted chimeric antigen receptor modified T cells
.
Biol Blood Marrow Transplant
.
2020
;
26
(
1
):
26
-
33
.
doi:10.13039/100000054.
14.
Fried
S
,
Avigdor
A
,
Bielorai
B
, et al.
Early and late hematologic toxicity following CD19 CAR-T cells
.
Bone Marrow Transplant
.
2019
;
54
(
10
):
1643
-
1650
.
doi:10.1038/s41409-019-0487-3.
15.
Rejeski
K
,
Kunz
WG
,
Rudelius
M
, et al.
Severe Candida glabrata pancolitis and fatal Aspergillus fumigatus pulmonary infection in the setting of bone marrow aplasia after CD19-directed CAR T-cell therapy—a case report
.
BMC Infect Dis
.
2021
;
21
(
1
):
121
.
doi:10.1186/s12879-020-05755-4.
16.
Xia
Y
,
Zhang
J
,
Li
J
, et al.
Cytopenias following anti-CD19 chimeric antigen receptor (CAR) T cell therapy: a systematic analysis for contributing factors
.
Ann Med
.
2022
;
54
(
1
):
2951
-
2965
.
doi:10.1080/07853890.2022.2136748.
17.
Rejeski
K
,
Wang
Y
,
Albanyan
O
, et al.
The CAR-HEMATOTOX score identifies patients at high risk for hematological toxicity, infectious complications, and poor treatment outcomes following brexucabtagene autoleucel for relapsed or refractory MCL
.
Am J Hematol
.
2023
.
doi:10.1182/blood-2022-167329
.
18.
Wang
Y
,
Jain
P
,
Locke
FL
, et al.
Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in standard-of-care practice: results from the US lymphoma CAR T consortium
.
J Clin Oncol
.
2023
;
41
(
14
):
2594
-
2606
.
doi:10.1200/JCO.22.01797.
19.
Iacoboni
G
,
Rejeski
K
,
Villacampa
G
, et al.
Real-world evidence of brexucabtagene autoleucel for the treatment of relapsed or refractory mantle cell lymphoma
.
Blood Adv
.
2022
;
6
(
12
):
3606
-
3610
.
doi:10.1182/bloodadvances.2021006922.
20.
Bachy
E
,
Le Gouill
S
,
Di Blasi
R
, et al.
A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma
.
Nat Med
.
2022
;
28
(
10
):
2145
-
2154
.
doi:10.1038/s41591-022-01969-y.
21.
Rejeski
K
,
Perez
A
,
Iacoboni
G
, et al
.
Severe hematotoxicity after CD19 CAR-T therapy is associated with suppressive immune dysregulation and limited CAR-T expansion
.
Sci Adv
.
2023
;
9
(
38
):
eadg3919
.
doi:10.1182/blood-2022-167632.
22.
Sterner
RM
,
Sakemura
R
,
Cox
MJ
, et al.
GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts
.
Blood
.
2019
;
133
(
7
):
697
-
709
.
doi:10.1182/blood-2018-10-881722.
23.
Barreto
JN
,
Bansal
R
,
Hathcock
MA
, et al.
The impact of granulocyte colony stimulating factor on patients receiving chimeric antigen receptor T-cell therapy
.
Am J Hematol
.
2021
;
96
(
10
):
E399
-
E402
.
doi:10.1002/ajh.26313.
24.
Galli
E
,
Allain
V
,
Di Blasi
R
, et al.
G-CSF does not worsen toxicities and efficacy of CAR-T cells in refractory/relapsed B-cell lymphoma
.
Bone Marrow Transplant
.
2020
;
55
(
12
):
2347
-
2349
.
doi:10.1038/s41409-020-01006-x.
25.
Lievin
R
,
Di Blasi
R
,
Morin
F
, et al.
Effect of early granulocyte-colony-stimulating factor administration in the prevention of febrile neutropenia and impact on toxicity and efficacy of anti-CD19 CAR-T in patients with relapsed/refractory B-cell lymphoma
.
Bone Marrow Transplant
.
2022
;
57
(
3
):
431
-
439
.
doi:10.1038/s41409-021-01526-0.
26.
Miller
KC
,
Johnson
PC
,
Abramson
JS
, et al.
Effect of granulocyte colony-stimulating factor on toxicities after CAR T cell therapy for lymphoma and myeloma
.
Blood Cancer J
.
2022
;
12
(
10
):
146
.
doi:10.1038/s41408-022-00741-2.
27.
Ma
S
,
Li
H
,
Zhou
D
, et al.
Associations of granulocyte colony-stimulating factor with toxicities and efficacy of chimeric antigen receptor T-cell therapy in relapsed or refractory multiple myeloma
.
Cytotherapy
.
2023
;
25
(
6
):
653
-
658
.
doi:10.1016/j.jcyt.2023.01.011.
28.
Jain
T
,
Knezevic
A
,
Pennisi
M
, et al.
Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies
.
Blood Adv
.
2020
;
4
(
15
):
3776
-
3787
.
doi:10.1182/bloodadvances.2020002509.
29.
Locke
FL
,
Neelapu
SS
,
Bartlett
NL
, et al.
Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma
.
Mol Ther
.
2017
;
25
(
1
):
285
-
295
.
doi:10.13039/100014481.
30.
Lin
Q
,
Liu
X
,
Han
L
, et al.
Autologous hematopoietic stem cell infusion for sustained myelosuppression after BCMA–CAR-T therapy in patient with relapsed myeloma
.
Bone Marrow Transpl
.
2020
;
55
(
6
):
1203
-
1205
.
doi:10.1038/s41409-019-0674-2.
31.
Rejeski
K
,
Burchert
A
,
Iacoboni
G
, et al.
Safety and feasibility of stem cell boost as a salvage therapy for severe hematotoxicity after CD19 CAR T-cell therapy
.
Blood Adv
.
2022
;
6
(
16
):
4719
-
4725
.
doi:10.1182/bloodadvances.2022007776.
32.
Davis
JA
,
Sborov
DW
,
Wesson
W
, et al.
Efficacy and safety of CD34+ stem cell boost for delayed hematopoietic recovery after BCMA directed CAR T-cell therapy
.
Transplant Cell Ther
.
2023
;
29
(
9
):
567
-
571
.
doi:10.1016/j.jtct.2023.05.012.
33.
Gagelmann
N
,
Wulf
GG
,
Duell
J
, et al.
Hematopoietic stem cell boost for persistent neutropenia after CAR T-cell therapy: a GLA/DRST study
.
Blood Adv
.
2023
;
7
(
4
):
555
-
559
.
doi:10.1182/bloodadvances.2022008042.
34.
Mullanfiroze
K
,
Lazareva
A
,
Chu
J
, et al.
CD34+-selected stem cell boost can safely improve cytopenias following CAR T-cell therapy
.
Blood Adv
.
2022
;
6
(
16
):
4715
-
4718
.
doi:10.1182/bloodadvances.2022007572.
35.
Rejeski
K
,
Greco
R
,
Onida
F
, et al.
An international survey on grading, diagnosis, and management of immune effector cell-associated hematotoxicity (ICAHT) following CAR T-cell therapy on behalf of the EBMT and EHA
.
Hemasphere
.
2023
;
7
(
5
):
e889
.
doi:10.1097/HS9.0000000000000889
.
36.
Baur
R
,
Jitschin
R
,
Kharboutli
S
, et al.
Thrombopoietin receptor agonists for acquired thrombocytopenia following anti-CD19 CAR-T-cell therapy: a case report
.
J Immunother Cancer
.
2021
;
9
(
7
).
doi:10.1136/jitc-2021-002721
.
37.
Beyar-Katz
O
,
Perry
C
,
On
YB
, et al.
Thrombopoietin receptor agonist for treating bone marrow aplasia following anti-CD19 CAR-T cells-single-center experience
.
Ann Hematol
.
2022
;
101
(
8
):
1769
-
1776
.
doi:10.1007/s00277-022-04889-6.
38.
Drillet
G
,
Lhomme
F
,
De Guibert
S
,
Manson
G
,
Houot
R
.
Prolonged thrombocytopenia after CAR T-cell therapy: the role of thrombopoietin receptor agonists
.
Blood Adv
.
2023
;
7
(
4
):
537
-
540
.
doi:10.1182/bloodadvances.2022008066
39.
Drexler
B
,
Passweg
J
.
Current evidence and the emerging role of eltrombopag in severe aplastic anemia
.
Ther Adv Hematol
.
2021
;
12
:
204062072199812
.
doi:10.1177/2040620721998126
.
40.
Peffault de Latour
R
,
Kulasekararaj
A
,
Iacobelli
S
, et al.
Eltrombopag added to immunosuppression in severe aplastic anemia
.
N Engl J Med
.
2022
;
386
(
1
):
11
-
23
.
doi:10.1056/NEJMoa2109965.
41.
Logue
JM
,
Peres
LC
,
Hashmi
H
, et al.
Early cytopenias and infections after standard of care idecabtagene vicleucel in relapsed or refractory multiple myeloma
.
Blood Adv
.
2022
;
6
(
24
):
6109
-
6119
.
doi:10.1182/bloodadvances.2022008320.
42.
Logue
JM
,
Zucchetti
E
,
Bachmeier
CA
, et al.
Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma
.
Haematologica
.
2021
;
106
(
4
):
978
-
986
.
doi:10.3324/haematol.2019.238634
43.
Haidar
G
,
Dorritie
K
,
Farah
R
,
Bogdanovich
T
,
Nguyen
MH
,
Samanta
P
.
Invasive mold infections after chimeric antigen receptor–modified T-cell therapy: a case series, review of the literature, and implications for prophylaxis
.
Clin Infect Dis
.
2020
;
71
(
3
):
672
-
676
.
doi:10.1093/cid/ciz1127.
44.
Nastoupil
LJ
,
Jain
MD
,
Feng
L
, et al.
Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US lymphoma CAR T consortium
.
J Clin Oncol
.
2020
;
38
(
27
):
3119
-
3128
.
doi:10.1200/JCO.19.02104.
45.
Rejeski
K
,
Hansen
DK
,
Bansal
R
, et al.
The CAR-HEMATOTOX score as a prognostic model of toxicity and response in patients receiving BCMA-directed CAR-T for relapsed/refractory multiple myeloma
.
J Hematol Oncol
.
2023
;
16
(
1
):
88
.
doi:10.1186/s13045-023-01465-x.
46.
Rejeski
K
,
Blumenberg
V
,
Iacoboni
G
, et al.
Identifying early infections in the setting of CRS with routine and exploratory serum proteomics and the HT10 score following CD19 CAR-T for relapsed/refractory B-NHL
.
Hemasphere
.
2023
;
7
(
4
):
e858
.
doi:10.1097/HS9.0000000000000858.
47.
Taplitz
RA
,
Kennedy
EB
,
Bow
EJ
, et al.
Antimicrobial prophylaxis for adult patients with cancer-related immunosuppression: ASCO and IDSA clinical practice guideline update
.
J Clin Oncol
.
2018
;
36
(
30
):
3043
-
3054
.
doi:10.1200/jco.18.00374.
48.
Smith
M
,
Dai
A
,
Ghilardi
G
, et al.
Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy
.
Nat Med
.
2022
;
28
(
4
):
713
-
723
.
doi:10.1038/s41591-022-01702-9.
49.
Stein-Thoeringer
CK
,
Saini
NY
,
Zamir
E
, et al.
A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy
.
Nat Med
.
2023
;
29
(
4
):
906
-
916
.
doi:10.1038/s41591-023-02234-6.
50.
Powell
MZ
,
Mara
KC
,
Bansal
R
, et al.
Procalcitonin as a biomarker for predicting bacterial infection in chimeric antigen receptor T-cell therapy recipients
.
Cancer Med
.
2023
;
12
(
8
):
9228
-
9235
.
doi:10.1002/cam4.5665.
51.
Roddie
C
,
Neill
L
,
Osborne
W
, et al.
Effective bridging therapy can improve CD19 CAR-T outcomes while maintaining safety in patients with large B-cell lymphoma
.
Blood Adv
.
2023
;
doi:10.1182/bloodadvances.2022009019
52.
Brudno
JN
,
Natrakul
D
,
Lam
N
,
Dulau-Florea
A
,
Yuan
CM
,
Kochenderfer
JN
.
Acute and delayed cytopenias following CAR T-cell therapy: an investigation of risk factors and mechanisms
.
Leuk Lymphoma
.
2022
;
63
(
8
):
1849
-
1860
.
doi:10.1080/10428194.2022.2056172.
53.
Juluri
KR
,
Wu
QV
,
Voutsinas
J
, et al.
Severe cytokine release syndrome is associated with hematologic toxicity following CD19 CAR T-cell therapy
.
Blood Adv
.
2022
;
6
(
7
):
2055
-
2068
.
doi:10.1182/bloodadvances.2020004142.
54.
Miller
PG
,
Sperling
AS
,
Brea
EJ
, et al.
Clonal hematopoiesis in patients receiving chimeric antigen receptor T-cell therapy
.
Blood Adv
.
2021
;
5
(
15
):
2982
-
2986
.
doi:10.1182/bloodadvances.2021004554.
55.
Saini
NY
,
Swoboda
DM
,
Greenbaum
U
, et al.
Clonal hematopoiesis is associated with increased risk of severe neurotoxicity in axicabtagene ciloleucel therapy of large B-cell lymphoma
.
Blood Cancer Discov
.
2022
;
3
(
5
):
385
-
393
.
doi:10.1158/2643-3230.BCD-21-0177.
56.
Rejeski
K
,
Wu
Z
,
Blumenberg
V
, et al.
Oligoclonal T-cell expansion in a patient with bone marrow failure after CD19 CAR-T therapy for Richter- transformed DLBCL
.
Blood
.
2022
;
140
(
20
):
2175
-
2179
.
doi:10.1182/blood.2022017015.
57.
Strati
P
,
Li
X
,
Deng
Q
, et al.
Prolonged cytopenia following CD19 CAR T cell therapy is linked with bone marrow infiltration of clonally expanded IFNgamma-expressing CD8 T cells
.
Cell Rep Med
.
2023
;
4
(
8
):
101158
.
doi:10.1016/j.xcrm.2023.101158.
58.
de Bruin
AM
,
Demirel
O
,
Hooibrink
B
,
Brandts
CH
,
Nolte
MA
.
Interferon- gamma impairs proliferation of hematopoietic stem cells in mice
.
Blood
.
2013
;
121
(
18
):
3578
-
85
.
doi:10.1182/blood-2012-05-432906.
59.
Morales-Mantilla
DE
,
King
KY
.
The role of interferon-gamma in hematopoietic stem cell development, homeostasis, and disease
.
Curr Stem Cell Rep
.
2018
;
4
(
3
):
264
-
271
.
doi:10.1007/s40778-018-0139-3.
60.
Dong
R
,
Wang
Y
,
Lin
Y
, et al.
The correlation factors and prognostic significance of coagulation disorders after chimeric antigen receptor T cell therapy in hematological malignancies: a cohort study
.
Ann Transl Med
.
2022
;
10
(
18
):
975
.
doi:10.21037/atm-22-3814.
61.
Jain
MD
,
Zhao
H
,
Wang
X
, et al.
Tumor interferon signaling and suppressive myeloid cells associate with CAR T cell failure in large B cell lymphoma
.
Blood
.
2021
;
doi:10.1182/blood.2020007445
.
62.
Jiang
H
,
Liu
L
,
Guo
T
, et al.
Improving the safety of CAR-T cell therapy by controlling CRS-related coagulopathy
.
Ann Hematol
.
2019
;
98
(
7
):
1721
-
1732
.
doi:10.1007/s00277-019-03685-z.
63.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
26
):
2531
-
2544
.
doi:10.1056/NEJMoa1707447.
64.
Hashmi
H
,
Mirza
AS
,
Darwin
A
, et al.
Venous thromboembolism associated with CD19-directed CAR T-cell therapy in large B-cell lymphoma
.
Blood Adv
.
2020
;
4
(
17
):
4086
-
4090
.
doi:10.1182/bloodadvances.2020002060.
65.
Johnsrud
A
,
Craig
J
,
Baird
J
, et al.
Incidence and risk factors associated with bleeding and thrombosis following chimeric antigen receptor T-cell therapy
.
Blood Adv
.
2021
;
5
(
21
):
4465
-
4475
.
doi:10.1182/bloodadvances.2021004716.
66.
Buechner
J
,
Grupp
SA
,
Hiramatsu
H
, et al.
Practical guidelines for monitoring and management of coagulopathy following tisagenlecleucel CAR T-cell therapy
.
Blood Adv
.
2021
;
5
(
2
):
593
-
601
.
doi:10.1182/bloodadvances.2020002757.
67.
Schorr
C
,
Forindez
J
,
Espinoza-Gutarra
M
,
Mehta
R
,
Grover
N
,
Perna
F
.
Thrombotic events are unusual toxicities of chimeric antigen receptor T-cell therapies
.
Int J Mol Sci
.
2023
;
24
(
9
).
doi:10.3390/ijms24098349
.
68.
Melody
M
,
Gandhi
S
,
Saunders
H
, et al.
Incidence of thrombosis in relapsed/refractory B-cell lymphoma treated with axicabtagene ciloleucel: Mayo Clinic experience
.
Leuk Lymphoma
.
2022
;
63
(
6
):
1363
-
1368
.
doi:10.1080/10428194.2022.2030475.
69.
Lichtenstein
DA
,
Schischlik
F
,
Shao
L
, et al.
Characterization of HLH-like manifestations as a CRS variant in patients receiving CD22 CAR T cells
.
Blood
.
2021
;
138
(
24
):
2469
-
2484
.
doi:10.1182/blood.2021011898.
70.
Hashmi
H
,
Bachmeier
C
,
Chavez
JC
, et al.
Haemophagocytic lymphohistiocytosis has variable time to onset following CD19 chimeric antigen receptor T cell therapy
.
Br J Haematol
.
2019
;
187
(
2
):
e35
-
e38
.
doi:10.1111/bjh.16155.
71.
Hines
MR
,
Knight
TE
,
McNerney
KO
, et al.
Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome
.
Transplant Cell Ther
.
2023
;
29
(
7
):
438.e1
-
438.e16
.
doi:10.1016/j.jtct.2023.03.006
.
72.
Zhang
Q
,
Zu
C
,
Jing
R
, et al.
Incidence, clinical characteristics and prognosis of tumor lysis syndrome following B-cell maturation antigen-targeted chimeric antigen receptor-T cell therapy in relapsed/refractory multiple myeloma
.
Front Immunol
.
2023
;
14
:
1125357
.
doi:10.3389/fimmu.2023.1125357
.
73.
Locke
FL
,
Ghobadi
A
,
Jacobson
CA
, et al.
Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial
.
Lancet Oncol
.
2019
;
20
(
1
):
31
-
42
.
doi:10.1016/S1470-2045(18)30864-7.
74.
Schuster
SJ
,
Bishop
MR
,
Tam
CS
, et al.
Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma
.
N Engl J Med
.
2019
;
380
(
1
):
45
-
56
.
doi:10.1056/NEJMoa1804980.
75.
Abramson
JS
,
Palomba
ML
,
Gordon
LI
, et al.
Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study
.
Lancet
.
2020
;
396
(
10254
):
839
-
852
.
doi:10.1016/S0140-6736(20)31366-0.
76.
Fowler
NH
,
Dickinson
M
,
Dreyling
M
, et al.
Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial
.
Nat Med
.
2022
;
28
(
2
):
325
-
332
.
doi:10.1038/s41591-021-01622-0.
77.
Jacobson
CA
,
Chavez
JC
,
Sehgal
AR
, et al.
Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single- arm, multicentre, phase 2 trial
.
Lancet Oncol
.
2022
;
23
(
1
):
91
-
103
.
doi:10.1016/S1470-2045(21)00591-X.
78.
Munshi
NC
,
Anderson
LD
, Jr.
,
Shah
N
, et al.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2021
;
384
(
8
):
705
-
716
.
doi:10.1056/NEJMoa2024850.
79.
Rodriguez-Otero
P
,
Ailawadhi
S
,
Arnulf
B
, et al.
Ide-cel or standard regimens in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2023
;
388
(
11
):
1002
-
1014
.
doi:10.1056/NEJMoa2213614.
80.
Berdeja
JG
,
Madduri
D
,
Usmani
SZ
, et al.
Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study
.
Lancet
.
2021
;
398
(
10297
):
314
-
324
.
doi:10.1016/S0140-6736(21)00933-8.
81.
San-Miguel
J
,
Dhakal
B
,
Yong
K
, et al.
Cilta-cel or standard care in lenalidomide-refractory multiple myeloma
.
N Engl J Med
.
2023
;
doi:10.1056/NEJMoa2303379
.
82.
Nahas
GR
,
Komanduri
KV
,
Pereira
D
, et al.
Incidence and risk factors associated with a syndrome of persistent cytopenias after CAR-T cell therapy (PCTT)
.
Leuk Lymphoma
.
2020
;
61
(
4
):
940
-
943
.
doi:10.1080/10428194.2019.1697814.
83.
Strati
P
,
Varma
A
,
Adkins
S
, et al.
Hematopoietic recovery and immune reconstitution after axicabtagene ciloleucel in patients with large B-cell lymphoma
.
Haematologica
.
2021
;
106
(
10
):
2667
-
2672
.
doi:10.3324/haematol.2020.254045.
84.
Wang
L
,
Hong
R
,
Zhou
L
, et al.
New-onset severe cytopenia after CAR-T cell therapy: analysis of 76 patients with relapsed or refractory acute lymphoblastic leukemia
.
Front Oncol
.
2021
;
11
:
702644
.
doi:10.3389/fonc.2021.702644
.
85.
Bethge
WA
,
Martus
P
,
Schmitt
M
, et al.
GLA/DRST real-world outcome analysis of CAR T-cell therapies for large B-cell lymphoma in Germany
.
Blood
.
2022
;
140
(
4
):
349
-
358
.
doi:10.1182/blood.2021015209.
86.
Penack
O
,
Peczynski
C
,
Koenecke
C
, et al.
Severe cytopenia after CD19 CAR T-cell therapy: a retrospective study from the EBMT Transplant Complications Working Party
.
J Immunother Cancer
.
2023
;
11
(
4
).
doi:10.1136/jitc-2022-006406
.
87.
Gurney
M
,
Alkhateeb
H
,
Shah
S
, et al.
S263:Cytopenias, Age and Car- Hematotox Score Predict the Development of Post Car T-Cell Therapy- Related Myeloid Neoplasms
.
Hemasphere
.
2023
Aug
;
7(Suppl)
:
e6718317
.
doi:10.1136/jitc-2022-006406.
You do not currently have access to this content.