Key Points
BCL11A disruption impairs erythroid precursor expansion in vitro and after xenotransplantation into immunodeficient mice
BCL11A regulates at least 25 genes directly and numerous others indirectly in erythroid precursors
Genetic depletion of the transcriptional repressor BCL11A in red blood cell precursors alleviates b-hemoglobinopathies by inducing the fetal g-globin genes. However, additional erythroid genes are regulated by BCL11A and the effects of its deficiency on erythropoiesis are insufficiently described. We discovered that Cas9 disruption of the BCL11A intron 2 erythroid enhancer in CD34+ hematopoietic stem and progenitor cells using a clinically approved strategy caused impaired expansion and apoptosis of erythroid precursors in vitro and reduced repopulation of the erythroid compartment after xenotransplantation into immunodeficient mice. Mutant colony-forming unit erythroid cells, proerythroblasts and basophilic erythroblasts exhibited dysregulation of 94 genes (> 2-fold change, FDR < 0.05), 25 of which are likely direct targets of BCL11A. Differentially expressed genes were associated with a range of biological pathways that impact cell expansion and survival. Our findings show that BCL11A regulates additional aspects of erythropoiesis beyond g-globin gene repression, with unknown clinical consequences.