The success of allogeneic stem cell transplantation has demonstrated the potential for immunotherapy to treat acute myeloid leukemia (AML). Although alternative T-cell-based immunotherapies have shown efficacy, they also pose the risk of on-target off-leukemia hematotoxicity. So far, adoptive autologous or allogeneic chimeric antigen receptor (CAR) T/natural killer cell therapy is almost exclusively employed as a bridge-to-transplant strategy in the context of clinical trials. For now, clinical trials predominantly target lineage-restricted antigens, but emerging approaches focus on leukemia-associated/specific intracellular target antigens, including dual and split targeting strategies. Adapter CAR T cells and T-cell-recruiting bispecific antibodies offer transient exposure with enhanced safety and multitargeting potential against antigen-escape variants. However, these have yet to demonstrate sustained responses and should be used earlier to treat low leukemia burden, preferably if measurable residual disease is present. To address immune dysregulation and enhance T-cell fitness, novel CAR T and bispecific designs, along with combinatorial strategies, might prove essential. Furthermore, genetic associations with inflammatory bone marrow signatures suggest the need for tailored platforms in defined AML subtypes. The eagerly anticipated results of trials investigating magrolimab, an anti-CD47 antibody targeting the “do not eat me” signal in p53-mutated AML, should shed further light on the potential of these evolving immunotherapeutic approaches.

1.
Craddock
C.
Transplant in AML with measurable residual disease: proceed or defer?
Hematology Am Soc Hematol Educ Program
.
2022
;
2022
(
1
):
528
-
533
.
doi:10.1182/hematology.2022000353.
2.
Todisco
E
,
Ciceri
F
,
Boschini
C
, et al.
Factors predicting outcome after allogeneic transplant in refractory acute myeloid leukemia: a retrospective analysis of Gruppo Italiano Trapianto di Midollo Osseo (GITMO)
.
Bone Marrow Transpl
.
2017
;
52
(
7
):
955
-
961
.
doi:10.1038/bmt.2016.325.
3.
Short
NJ
,
Zhou
S
,
Fu
C
, et al.
Association of measurable residual disease with survival outcomes in patients with acute myeloid leukemia: a systematic review and meta-analysis
.
JAMA Oncol
.
2020
;
6
(
12
):
1890
-
1899
.
doi:10.1001/jamaoncol.2020.4600
.
4.
Hourigan
CS
,
Dillon
LW
,
Gui
G
, et al.
Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease
.
J Clin Oncol
.
2020
;
38
(
12
):
1273
-
1283
.
doi:10.1200/JCO.19.03011
.
5.
Craddock
C
,
Jackson
A
,
Loke
J
, et al.
Augmented reduced-intensity regimen does not improve postallogeneic transplant outcomes in acute myeloid leukemia
.
J Clin Oncol
.
2021
;
39
(
7
):
768
-
778
.
doi:10.1200/JCO.20.02308
.
6.
Poiré
X
,
Labopin
M
,
Maertens
J
, et al.
Allogeneic stem cell transplantation in adult patients with acute myeloid leukaemia and 17p abnormalities in first complete remission: a study from the Acute Leukemia Working Party (ALWP) of the European Society for Blood and Marrow Transplantation (EBMT)
.
J Hematol Oncol
.
2017
;
10
(
1
):
20
.
doi:10.1186/s13045-017-0393-3
.
7.
Leukemia & Lymphoma Society. Blood and marrow stem cell transplantation
. Updated
2023
. Accessed
August
16
,
2023
. https://www.lls.org/sites/default/files/2023-05/PS40_BloodMarrow_Booklet_2023.pdf
8.
Abraham
IE
,
Rauscher
GH
,
Patel
AA
, et al.
Structural racism is a mediator of disparities in acute myeloid leukemia outcomes
.
Blood
.
2022
;
139
(
14
):
2212
-
2226
.
doi:10.1182/blood.2021012830
.
9.
Khaldoyanidi
S
,
Nagorsen
D
,
Stein
A
,
Ossenkoppele
G
,
Subklewe
M.
Immune biology of acute myeloid leukemia: implications for immunotherapy
.
J Clin Oncol
.
2021
;
39
(
5
):
419
-
432
.
doi:10.1200/JCO.20.00475
.
10.
Lasry
A
,
Nadorp
B
,
Fornerod
M
, et al.
An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia
.
Nat Cancer
.
2023
;
4
(
1
):
27
-
42
.
doi:10.1038/s43018-022-00480-0
.
11.
Vadakekolathu
J
,
Rutella
S.
Escape from T-cell targeting immunotherapies in acute myeloid leukemia
.
Blood
.
2023
:blood.2023019961.
doi:10.1182/blood.2023019961
.
12.
Daver
N
,
Alotaibi
AS
,
Bücklein
V
,
Subklewe
M.
T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments
.
Leukemia
.
2021
;
35
(
7
):
1843
-
1863
.
doi:10.1038/s41375-021-01253-x
.
13.
Haubner
S
,
Perna
F
,
Köhnke
T
, et al.
Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML
.
Leukemia
.
2019
;
33
(
1
):
64
-
74
.
doi:10.1038/s41375-018-0180-3
.
14.
Abbott
RC
,
Hughes-Parry
HE
,
Jenkins
MR
.
To go or not to go? Biological logic gating engineered T cells
.
J Immunother Cancer
.
2022
;
10
:e004185.
doi:10.1136/jitc-2021-004185
.
15.
Perna
F
,
Berman
SH
,
Soni
RK
, et al.
Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML
.
Cancer Cell
.
2017
;
32
(
4
):
506
-
519.e5519e5
.
doi:10.1016/j.ccell.2017.09.004
.
16.
Gottschlich
A
,
Thomas
M
,
Grünmeier
R
, et al.
Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia
.
Nat Biotechnol
. Accessed
13
March
2023
.
doi:10.1038/s41587-023-01684-0
.
17.
Augsberger
C
,
Hänel
G
,
Xu
W
, et al.
Targeting intracellular WT1 in AML with a novel RMF-peptide-MHC-specific T-cell bispecific antibody
.
Blood
.
2021
;
138
(
25
):
2655
-
2669
.
doi:10.1182/blood.2020010477
.
18.
Yu
B
,
Liu
D.
Gemtuzumab ozogamicin and novel antibody-drug conjugates in clinical trials for acute myeloid leukemia
.
Biomark Res
.
2019
;
7
:
24
.
doi:10.1186/s40364-019-0175-x
.
19.
Pabst
T
,
Vey
N
,
Adès
L
, et al.
Results from a phase I/II trial of cusatuzumab combined with azacitidine in patients with newly diagnosed acute myeloid leukemia who are ineligible for intensive chemotherapy
.
Haematologica
.
2023
;
108
(
7
):
1793
-
1802
.
doi:10.3324/haematol.2022.281563
.
20.
Ravandi
F
,
Walter
RB
,
Subklewe
M
, et al.
Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML)
.
J Clin Oncol
.
2020
;
38
:
7508
.
doi:10.1200/JCO.2020.38.15_suppl.7508
.
21.
Uy
GL
,
Aldoss
I
,
Foster
MC
, et al.
Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia
.
Blood
.
2021
;
137
(
6
):
751
-
762
.
doi:10.1182/blood.2020007732
.
22.
Stein
AS
,
Jongen-Lavrencic
M
,
Garciaz
S
, et al.
A first-in-human study of CD123 NK cell engager SAR443579 in relapsed or refractory acute myeloid leukemia, B-cell acute lymphoblastic leukemia, or high-risk myelodysplasia
.
J Clin Oncol
.
2023
;
41
(
16_suppl
):
7005
.
doi:10.1200/jco.2023.41.16_suppl.7005
.
23.
Philipp
N
,
Kazerani
M
,
Nicholls
A
, et al.
T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals
.
Blood
.
2022
;
140
(
10
):
1104
-
1118
.
doi:10.1182/blood.2022015956
.
24.
Kamata-Sakurai
M
,
Narita
Y
,
Hori
Y
, et al.
Antibody to CD137 activated by extracellular adenosine triphosphate is tumor selective and broadly effective in vivo without systemic immune activation
.
Cancer Discov
.
2021
;
11
(
1
):
158
-
175
.
doi:10.1158/2159-8290.CD-20-0328
.
25.
Schorr
C
,
Perna
F.
Targets for chimeric antigen receptor T-cell therapy of acute myeloid leukemia
.
Front Immunol
.
2022
;
13
:1085978.
doi:10.3389/fimmu.2022.1085978
.
26.
Sallman
DA
,
Elmariah
H
,
Sweet
K
, et al.
Phase 1/1b safety study of Prgn-3006 Ultracar-T in patients with relapsed or refractory CD33-positive acute myeloid leukemia and higher risk myelodysplastic syndromes
.
Blood
.
2022
;
140
:
10313
-
10315
.
doi:10.1182/blood-2021-152692
.
27.
Sallman
DA
,
DeAngelo
DJ
,
Pemmaraju
N
, et al.
Ameli-01: a phase I trial of UCART123v1.2, an anti-CD123 allogeneic CAR-T cell product, in adult patients with relapsed or refractory (R/R) CD123+ acute myeloid leukemia (AML)
.
Blood
.
2022
;
140
:
2371
-
2373
.
doi:10.1182/blood-2022-169928
.
28.
Zhang
H
,
Wang
P
,
Li
Z
,
He
Y
,
Gan
W
,
Jiang
H.
Anti-CLL1 chimeric antigen receptor T-cell therapy in children with relapsed/refractory acute myeloid leukemia
.
Clin Cancer Res
.
2021
;
27
(
13
):
3549
-
3555
.
doi:10.1158/1078-0432.CCR-20-4543
.
29.
Bu
C
,
Peng
Z
,
Luo
M
, et al.
Phase I clinical trial of autologous CLL1 CAR-T therapy for pediatric patients with relapsed and refractory acute myeloid leukemia
.
Blood
.
2020
;
136
:
13
.
doi:10.1182/blood-2020-140648
.
30.
Jin
X
,
Zhang
M
,
Sun
R
, et al.
First-in-human phase I study of CLL-1 CAR-T cells in adults with relapsed/refractory acute myeloid leukemia
.
J Hematol Oncol
.
2022
;
15
(
1
):
88
.
doi:10.1186/s13045-022-01308-1
.
31.
Liu
F
,
Zhang
H
,
Sun
L
, et al.
First-in-human CLL1-CD33 compound CAR (CCAR) T cell therapy in relapsed and refractory acute myeloid leukemia
. Abstract presented at: 25th European Hematology Association Congress Virtual; June 11-21,
2020
.
32.
Kim
MY
,
Yu
K-R
,
Kenderian
S-S
, et al.
Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia
.
Cell
.
2018
;
173
(
6
):
1439
-
1453.e191453e19
.
doi:10.1016/j.cell.2018.05.013
.
33.
Koehne
G
,
Tomlinson
B
,
Suh
H
, et al.
CD33-deleted hematopoietic stem and progenitor cells display normal engraftment after hematopoietic cell transplant (HCT) and tolerate post-HCT gemtuzumab ozogamicin (GO) without cytopenias
. Abstract presented at: 28th European Hematology Association Congress Frankfurt and Virtual; June 8-15,
2023
.
34.
Sallman
DA
,
Kerre
T
,
Havelange
V
, et al.
CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): haematological cohorts of the dose escalation segment of a phase 1 trial
.
Lancet Haematol
.
2023
;
10
(
3
):
e191
-
e202
.
doi:10.1016/S2352-3026(22)00378-7
.
35.
Paczulla
AM
,
Rothfelder
K
,
Raffel
S
, et al.
Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion
.
Nature
.
2019
;
572
(
7768
):
254
-
259
.
doi:10.1038/s41586-019-1410-1
.
36.
Nixdorf
D
,
Sponheimer
M
,
Berghammer
D
, et al.
Adapter CAR T cells to counteract T-cell exhaustion and enable flexible targeting in AML
.
Leukemia
.
2023
;
37
(
6
):
1298
-
1310
.
doi:10.1038/s41375-023-01905-0
.
37.
Ehninger
G
,
Kraus
S
,
Sala
E
, et al.
Phase 1 dose escalation study of the rapidly switchable universal CAR-T therapy Unicar-T-CD123 in relapsed/refractory AML
.
Blood
.
2022
;
140
:
2367
2368
.
doi:10.1182/blood-2022-168877
.
38.
Liu
H
,
Sharon
E
,
Karrison
TG
, et al.
Randomized phase II study to assess the role of nivolumab as single agent to eliminate minimal residual disease and maintain remission in acute myelogenous leukemia (AML) patients after chemotherapy (NCI9706 protocol; REMAIN Trial)
.
Blood
.
2022
;
140
(
Supplement 1
):
1716
1719
.
doi:10.1182/blood-2022-157326
.
39.
Zeidner
JF
,
Vincent
BG
,
Ivanova
A
, et al.
Phase II trial of pembrolizumab after high-dose cytarabine in relapsed/refractory acute myeloid leukemia
.
Blood Cancer Discov
.
2021
;
2
(
6
):
616
-
629
.
doi:10.1158/2643-3230.BCD-21-0070
.
40.
Davids
MS
,
Kim
HT
,
Bachireddy
P
, et al
;
Leukemia and Lymphoma Society Blood Cancer Research Partnership
.
Ipilimumab for patients with relapse after allogeneic transplantation
.
N Engl J Med
.
2016
;
375
(
2
):
143
-
153
.
doi:10.1056/NEJMoa1601202
.
41.
Yang
H
,
Bueso-Ramos
C
,
DiNardo
C
, et al.
Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents
.
Leukemia
.
2014
;
28
(
6
):
1280
-
1288
.
doi:10.1038/leu.2013.355
.
42.
Daver
N
,
Garcia-Manero
G
,
Basu
S
, et al.
Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study
.
Cancer Discov
.
2019
;
9
(
3
):
370
-
383
.
doi:10.1158/2159-8290.CD-18-0774
.
43.
Abbas
HA
,
Hao
D
,
Tomczak
K
, et al.
Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy
.
Nat Commun
.
2021
;
12
(
1
):
6071
.
doi:10.1038/s41467-021-26282-z
.
44.
Zeidan
AM
,
Boss
I
,
Beach
CL
, et al.
A randomized phase 2 trial of azacitidine with or without durvalumab as first-line therapy for older patients with AML
.
Blood Adv
.
2022
;
6
(
7
):
2219
-
2229
.
doi:10.1182/bloodadvances.2021006138
.
45.
Brunner
AM
,
Esteve
J
,
Porkka
K
, et al.
Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients (Pts) with very high/high-risk myelodysplastic syndrome (vHR/HR-MDS) and acute myeloid leukemia (AML): final analysis from a phase Ib study
.
Blood
.
2021
;
138
(
Supplement 1
):
244
.
doi:10.1182/blood-2021-146039
.
46.
Santini
V
,
Platzbecker
U
,
Fenaux
P
, et al.
Disease characteristics and International Prognostic Scoring Systems (IPSS, IPSS-R, IPSS-M) in adult patients with higher-risk myelodysplastic syndromes (MDS) participating in two randomized, double-blind, placebo-controlled studies with intravenous sabatolimab added to hypomethylating agents (HMA) (STIMULUS-MDS-1 and MDS2)
.
Blood
.
2022
;
140
(
Supplement 1
):
1340
1342
.
doi:10.1182/blood-2022-160282
.
47.
Jaiswal
S
,
Jamieson
CH
,
Pang
WW
, et al.
CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis
.
Cell
.
2009
;
138
(
2
):
271
-
285
.
doi:10.1016/j.cell.2009.05.046
.
48.
Majeti
R
,
Chao
MP
,
Alizadeh
AA
, et al.
CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells
.
Cell
.
2009
;
138
(
2
):
286
-
299
.
doi:10.1016/j.cell.2009.05.045
.
49.
Daver
NG
,
Maiti
A
,
Kadia
TM
, et al.
TP53-mutated myelodysplastic syndrome and acute myeloid leukemia: biology, current therapy, and future directions
.
Cancer Discov
.
2022
;
12
(
11
):
2516
-
2529
.
doi:10.1158/2159-8290.CD-22-0332
.
50.
Pollyea
DA
,
Pratz
KW
,
Wei
AH
, et al.
Outcomes in patients with poor-risk cytogenetics with or without TP53 mutations treated with venetoclax and azacytidine
.
Clin Cancer Res
.
2022
;
28
(
24
):
5272
-
5279
.
doi:10.1158/1078-0432.CCR-22-1183
.
51.
Badar
T
,
Atallah
E
,
Shallis
RM
, et al.
Outcomes of TP53-mutated AML with evolving frontline therapies: impact of allogeneic stem cell transplantation on survival
.
Am J Hematol
.
2022
;
97
(
7
):
E232
-
E235
.
doi:10.1002/ajh.26546
.
52.
Jia
Y
,
Zhang
Q
,
Weng
C
, et al.
Combined blockade of CD47-SIRPa interaction by 5F (magrolimab) and azacitidine/venetoclax therapy facilitates macrophage-mediated anti-leukemia efficacy in AML pre-clinical models
.
Blood
.
2021
;
138
(
Supplement 1
):
510
.
doi:10.1182/blood-2021-147479
.
53.
Daver
N
,
Senapati
J
,
Maiti
A
, et al.
Phase I/II study of azacitidine (AZA) with venetoclax (VEN) and magrolimab (Magro) in patients (pts) with newly diagnosed (ND) older/unfit or high-risk acute myeloid leukemia (AML) and relapsed/refractory (R/R) AML et al
.
Blood
.
2022
;
140
(
Supplement 1
):
141
-
144
.
doi:10.1182/blood-2022-170188
.
54.
Heuser
M
,
Freeman
SD
,
Ossenkoppele
GJ
, et al.
2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party
.
Blood
.
2021
;
138
(
26
):
2753
-
2767
.
doi:10.1182/blood.2021013626
.
55.
Vadakekolathu
J
,
Lai
C
,
Reeder
S
, et al.
TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML
.
Blood Adv
.
2020
;
4
(
20
):
5011
-
5024
.
doi:10.1182/bloodadvances.2020002512
.
56.
Rimando
JC
,
Chendamarai
E
,
Rettig
MP
, et al.
Flotetuzumab and other T-cell immunotherapies upregulate MHC class II expression on acute myeloid leukemia cells
.
Blood
.
2023
;
141
(
14
):
1718
-
1723
.
doi:10.1182/blood.2022017795
.
You do not currently have access to this content.