• Caplacizumab with immunosuppression, but without additional TPE, is an effective and safe treatment strategy for acute iTTP.

Abstract

Immune thrombotic thrombocytopenic purpura (iTTP) is a rare, life-threatening autoimmune disorder caused by a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 (ADAMTS13) deficiency. Caplacizumab, an anti–von Willebrand factor nanobody, is approved for iTTP treatment, reducing the need for therapeutic plasma exchange (TPE) and improving platelet count recovery and survival. We conducted a retrospective study on 42 acute iTTP cases in Austria and Germany, treated with a modified regimen aimed at avoiding TPE if platelet count increased after the first caplacizumab dose. Baseline characteristics and patient outcomes were compared with a control group of 59 patients with iTTP receiving frontline treatment with TPE, caplacizumab, and immunosuppression. The main outcome was the time to platelet count normalization. Secondary outcomes included clinical response, exacerbation, refractory iTTP, iTTP-related deaths, and the time to platelet count doubling. The median time to platelet count normalization was similar between the 2 cohorts (3 and 4 days; P = .31). There were no significant differences in clinical response, exacerbations, refractoriness, iTTP-related deaths, or time to platelet count doubling, reflecting the short-term treatment response. Four patients did not respond to the first caplacizumab dose, and TPE was subsequently initiated. Cytomegalovirus infection, HIV/hepatitis B virus coinfection, an ovarian teratoma with associated antiplatelet antibodies, and multiple platelet transfusions before the correct diagnosis may have impeded the immediate treatment response in these patients. In conclusion, caplacizumab and immunosuppression alone, without TPE, rapidly controlled thrombotic microangiopathy and achieved a sustained clinical response in iTTP. Our study provides a basis for TPE-free iTTP management in experienced centers via shared decision-making between patients and treating physicians.

1.
Peyvandi
F
,
Scully
M
,
Kremer Hovinga
JA
, et al
.
Caplacizumab for acquired thrombotic thrombocytopenic purpura
.
N Engl J Med
.
2016
;
374
(
6
):
511
-
522
.
2.
Scully
M
,
Cataland
SR
,
Peyvandi
F
, et al
.
Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura
.
N Engl J Med
.
2019
;
380
(
4
):
335
-
346
.
3.
Peyvandi
F
,
Cataland
S
,
Scully
M
, et al
.
Caplacizumab prevents refractoriness and mortality in acquired thrombotic thrombocytopenic purpura: integrated analysis
.
Blood Adv
.
2021
;
5
(
8
):
2137
-
2141
.
4.
Zheng
XL
,
Vesely
SK
,
Cataland
SR
, et al
.
ISTH guidelines for treatment of thrombotic thrombocytopenic purpura
.
J Thromb Haemost
.
2020
;
18
(
10
):
2496
-
2502
.
5.
Eller
K
,
Knoebl
P
,
Bakkaloglu
SA
, et al
.
European renal best practice endorsement of guidelines for diagnosis and therapy of thrombotic thrombocytopaenic purpura published by the International Society on Thrombosis and Haemostasis
.
Nephrol Dial Transplant
.
2022
;
37
(
7
):
1229
-
1234
.
6.
Chander
DP
,
Loch
MM
,
Cataland
SR
,
George
JN
.
Caplacizumab therapy without plasma exchange for acquired thrombotic thrombocytopenic purpura
.
N Engl J Med
.
2019
;
381
(
1
):
92
-
94
.
7.
Völker
LA
,
Brinkkoetter
PT
,
Knöbl
PN
, et al
.
Treatment of acquired thrombotic thrombocytopenic purpura without plasma exchange in selected patients under caplacizumab
.
J Thromb Haemost
.
2020
;
18
(
11
):
3061
-
3066
.
8.
Irani
MS
,
Sanchez
F
,
Friedman
K
.
Caplacizumab for treatment of thrombotic thrombocytopenic purpura in a patient with anaphylaxis to fresh-frozen plasma
.
Transfusion
.
2020
;
60
(
8
):
1666
-
1668
.
9.
Sukumar
S
,
George
JN
,
Cataland
SR
.
Shared decision making, thrombotic thrombocytopenic purpura, and caplacizumab
.
Am J Hematol
.
2020
;
95
(
4
):
E76
-
E77
.
10.
Rock
GA
,
Shumak
KH
,
Buskard
NA
, et al
.
Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group
.
N Engl J Med
.
1991
;
325
(
6
):
393
-
397
.
11.
Shariatmadar
S
,
Nassiri
M
,
Vincek
V
.
Effect of plasma exchange on cytokines measured by multianalyte bead array in thrombotic thrombocytopenic purpura
.
Am J Hematol
.
2005
;
79
(
2
):
83
-
88
.
12.
Westwood
JP
,
Langley
K
,
Heelas
E
,
Machin
SJ
,
Scully
M
.
Complement and cytokine response in acute thrombotic thrombocytopenic purpura
.
Br J Haematol
.
2014
;
164
(
6
):
858
-
866
.
13.
Isonishi
A
,
Bennett
CL
,
Plaimauer
B
,
Scheiflinger
F
,
Matsumoto
M
,
Fujimura
Y
.
Poor responder to plasma exchange therapy in acquired thrombotic thrombocytopenic purpura is associated with ADAMTS13 inhibitor boosting: visualization of an ADAMTS13 inhibitor complex and its proteolytic clearance from plasma
.
Transfusion
.
2015
;
55
(
10
):
2321
-
2330
.
14.
Völker
LA
,
Kaufeld
J
,
Miesbach
W
, et al
.
Real-world data confirm the effectiveness of caplacizumab in acquired thrombotic thrombocytopenic purpura
.
Blood Adv
.
2020
;
4
(
13
):
3085
-
3092
.
15.
Völker
LA
,
Kaufeld
J
,
Miesbach
W
, et al
.
ADAMTS13 and VWF activities guide individualized caplacizumab treatment in patients with aTTP
.
Blood Adv
.
2020
;
4
(
13
):
3093
-
3101
.
16.
Kühne
L
,
Kaufeld
J
,
Völker
LA
, et al
.
Alternate-day dosing of caplacizumab for immune-mediated thrombotic thrombocytopenic purpura
.
J Thromb Haemost
.
2022
;
20
(
4
):
951
-
960
.
17.
Völker
LA
,
Kaufeld
J
,
Balduin
G
, et al
.
Impact of first-line use of caplacizumab on treatment outcomes in immune thrombotic thrombocytopenic purpura
.
J Thromb Haemost
.
2023
;
21
(
3
):
559
-
572
.
18.
Cuker
A
,
Cataland
SR
,
Coppo
P
, et al
.
Redefining outcomes in immune TTP: an international working group consensus report
.
Blood
.
2021
;
137
(
14
):
1855
-
1861
.
19.
Scully
M
,
Cataland
S
,
Coppo
P
, et al
.
Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies
.
J Thromb Haemost
.
2017
;
15
(
2
):
312
-
322
.
20.
Schulman
S
,
Kearon
C
;
Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis
.
Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients
.
J Thromb Haemost
.
2005
;
3
(
4
):
692
-
694
.
21.
Benhamou
Y
,
Assié
C
,
Boelle
PY
, et al
.
Development and validation of a predictive model for death in acquired severe ADAMTS13 deficiency-associated idiopathic thrombotic thrombocytopenic purpura: the French TMA reference center experience
.
Haematologica
.
2012
;
97
(
8
):
1181
-
1186
.
22.
Prasannan
N
,
Thomas
M
,
Stubbs
M
, et al
.
Delayed normalization of ADAMTS13 activity in acute thrombotic thrombocytopenic purpura in the caplacizumab era
.
Blood
.
2023
;
141
(
18
):
2206
-
2213
.
23.
Mingot-Castellano
ME
,
García-Candel
F
,
Nieto
JM
, et al
.
ADAMTS13 recovery in acute thrombotic thrombocytoprnic purpura after caplacizumab therapy. The Spanish Registry
.
Blood
.
2024
;
143
(
18
):
1807
-
1815
.
24.
Coppo
P
,
Bubenheim
M
,
Azoulay
E
, et al
.
A regimen with caplacizumab, immunosuppression, and plasma exchange prevents unfavorable outcomes in immune-mediated TTP
.
Blood
.
2021
;
137
(
6
):
733
-
742
.
25.
Scully
M
,
Baptista
J
,
Bhattacharya
I
, et al
.
S305: phase 2 randomized, placebo-controlled, double-blind, multicenter study of recombinant ADAMTS13 in patients with immune-mediated thrombotic thrombocytopenic purpura
.
Hemasphere
.
2023
;
7
(
S3
):
e8651306
.
26.
Miesbach
W
,
Menne
J
,
Bommer
M
, et al
.
Incidence of acquired thrombotic thrombocytopenic purpura in Germany: a hospital level study
.
Orphanet J Rare Dis
.
2019
;
14
(
1
):
260
.
You do not currently have access to this content.
Sign in via your Institution