Abstract

Hereditary stomatocytosis represents a heterogeneous group of inherited erythrocyte membrane defects characterized by hemolytic anemia of variable degree, with alterations in cellular salt and water, ranging from dehydration to overhydration, and the presence of stomatocytes on peripheral blood smear. This condition encompasses various subtypes, each with distinct clinical and genetic features. The pathophysiology underlying these conditions involves altered red blood cell membrane properties, leading to impaired deformability and alterations in cation permeability and volume, causing increased susceptibility to hemolysis. Advancements in genetic testing have enabled the identification of some causative genes in the last years, such as PIEZO1, KCNN4, and ABCB6. These genetic discoveries have facilitated a deeper understanding of the molecular mechanisms underlying the pathogenesis and have paved the way for improved diagnostic accuracy and genetic counseling. This review provides an overview of the clinical presentation, pathophysiology, molecular genetics, diagnosis, and management strategies of hereditary stomatocytosis, highlighting recent advancements in the field of dehydrated hereditary stomatocytosis (DHS), or hereditary xerocytosis, and hepatic iron overload. This latter is directly associated with the physiological role of PIEZO1, the causative gene of DHS, at hepatic and macrophagic levels. Particularly, gain-of-function mutations in PIEZO1 account for a pleiotropic syndrome characterized by different phenotypes depending on the expression of PIEZO1 in multiple cells and tissues.

1.
Andolfo
I
,
Russo
R
,
Gambale
A
,
Iolascon
A
.
Hereditary stomatocytosis: an underdiagnosed condition
.
Am J Hematol
.
2018
;
93
(
1
):
107
-
121
.
2.
Andolfo
I
,
Russo
R
,
Gambale
A
,
Iolascon
A
.
New insights on hereditary erythrocyte membrane defects
.
Haematologica
.
2016
;
101
(
11
):
1284
-
1294
.
3.
Andolfo
I
,
Russo
R
,
Rosato
BE
, et al
.
Genotype-phenotype correlation and risk stratification in a cohort of 123 hereditary stomatocytosis patients
.
Am J Hematol
.
2018
;
93
(
12
):
1509
-
1517
.
4.
Iolascon
A
,
Andolfo
I
,
Russo
R
.
Advances in understanding the pathogenesis of red cell membrane disorders
.
Br J Haematol
.
2019
;
187
(
1
):
13
-
24
.
5.
Stewart
GW
,
Gibson
JS
,
Rees
DC
.
The cation-leaky hereditary stomatocytosis syndromes: a tale of six proteins
.
Br J Haematol
.
2023
;
203
(
4
):
509
-
522
.
6.
Delaunay
J
.
The hereditary stomatocytoses: genetic disorders of the red cell membrane permeability to monovalent cations
.
Semin Hematol
.
2004
;
41
(
2
):
165
-
172
.
7.
Badens
C
,
Guizouarn
H
.
Advances in understanding the patho-genesis of the red cell volume disorders
.
Br J Haematol
.
2016
;
174
(
5
):
674
-
685
.
8.
Gallagher
PG
.
Disorders of erythrocyte hydration
.
Blood
.
2017
;
130
(
25
):
2699
-
2708
.
9.
Flatt
JF
,
Bruce
LJ
.
The molecular basis for altered cation permeability in hereditary stomatocytic human red blood cells
.
Front Physiol
.
2018
;
9
:
367
.
10.
Stewart
GW
.
Hemolytic disease due to membrane ion channel dis-orders
.
Curr Opin Hematol
.
2004
;
11
(
4
):
244
-
250
.
11.
Coste
B
,
Mathur
J
,
Schmidt
M
, et al
.
Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels
.
Science
.
2010
;
330
(
6000
):
55
-
60
.
12.
Andolfo
I
,
Alper
SL
,
Iolascon
A
.
Nobel prize in physiology or medicine 2021, receptors for temperature and touch: implications for hematology
.
Am J Hematol
.
2022
;
97
(
2
):
168
-
170
.
13.
Ge
J
,
Li
W
,
Zhao
Q
, et al
.
Architecture of the mammalian mechanosensitive Piezo1 channel
.
Nature
.
2015
;
527
(
7576
):
64
-
69
.
14.
Saotome
K
,
Murthy
S
,
Kefauver
J
,
Whitwam
T
,
Patapoutian
A
,
Ward
AB
.
Structure of the mechanically activated ion channel Piezo1
.
Nature
.
2018
;
554
(
7693
):
481
-
486
.
15.
Yang
X
,
Lin
C
,
Chen
X
,
Li
S
,
Li
X
,
Xiao
B
.
Structure deformation and curvature sensing of PIEZO1 in lipid membranes
.
Nature
.
2022
;
604
(
7905
):
377
-
383
.
16.
Liu
S
,
Yang
X
,
Chen
X
, et al
.
An intermediate open structure reveals the gating transition of the mechanically activated PIEZO1 channel
.
Neuron
.
2025
;
113
(
4
):
590
-
604.e6
.
17.
Mulhall
EM
,
Gharpure
A
,
Lee
RM
, et al
.
Direct observation of the conformational states of PIEZO1
.
Nature
.
2023
;
620
(
7976
):
1117
-
1125
.
18.
Andolfo
I
,
Alper
SL
,
De Franceschi
L
, et al
.
Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1
.
Blood
.
2013
;
121
(
19
):
3925
-
3935
.
19.
Zarychanski
R
,
Schulz
VP
,
Houston
BL
, et al
.
Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis
.
Blood
.
2012
;
120
(
9
):
1908
-
1915
.
20.
Wang
S
,
Chennupati
R
,
Kaur
H
,
Iring
A
,
Wettschureck
N
,
Offermanns
S
.
Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release
.
J Clin Invest
.
2016
;
126
(
12
):
4527
-
4536
.
21.
Gudipaty
SA
,
Lindblom
J
,
Loftus
PD
, et al
.
Mechanical stretch triggers rapid epithelial cell division through Piezo1
.
Nature
.
2017
;
543
(
7643
):
118
-
121
.
22.
Ranade
SS
,
Qiu
Z
,
Woo
SH
, et al
.
Piezo1, a mechanically activated ion channel, is required for vascular development in mice
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
28
):
10347
-
10352
.
23.
Wu
J
,
Lewis
AH
,
Grandl
J
.
Touch, tension, and transduction - the function and regulation of Piezo ion channels
.
Trends Biochem Sci
.
2017
;
42
(
1
):
57
-
71
.
24.
Albuisson
J
,
Murthy
SE
,
Bandell
M
, et al
.
Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels
.
Nat Commun
.
2013
;
4
:
1884
.
25.
Fotiou
E
,
Martin-Almedina
S
,
Simpson
MA
, et al
.
Novel mutations in PIEZO1 cause an autosomal recessive generalized lymphatic dysplasia with non-immune hydrops fetalis
.
Nat Commun
.
2015
;
6
:
8085
.
26.
Lukacs
V
,
Mathur
J
,
Mao
R
, et al
.
Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia
.
Nat Commun
.
2015
;
6
:
8329
.
27.
Andolfo
I
,
De Rosa
G
,
Errichiello
E
, et al
.
PIEZO1 hypomorphic variants in congenital lymphatic dysplasia cause shape and hydration alterations of red blood cells
.
Front Physiol
.
2019
;
10
:
258
.
28.
Cahalan
SM
,
Lukacs
V
,
Ranade
SS
,
Chien
S
,
Bandell
M
,
Patapoutian
A
.
Piezo1 links mechanical forces to red blood cell volume
.
eLife
.
2015
;
4
:
e07370
.
29.
Faucherre
A
,
Kissa
K
,
Nargeot
J
,
Mangoni
ME
,
Jopling
C
.
Piezo1 plays a role in erythrocyte volume homeostasis
.
Haematologica
.
2014
;
99
(
1
):
70
-
75
.
30.
Faucherre
A
,
Kissa
K
,
Nargeot
J
,
Mangoni
ME
,
Jopling
C
.
Comment on: ‘homozygous knockout of the piezo1 gene in the zebrafish is not associated with anemia’
.
Haematologica
.
2016
;
101
(
1
):
e38
.
31.
Shmukler
BE
,
Huston
NC
,
Thon
JN
, et al
.
Homozygous knockout of the piezo1 gene in the zebrafish is not associated with anemia
.
Haematologica
.
2015
;
100
(
12
):
e483
-
e485
.
32.
Shmukler
BE
,
Lawson
ND
,
Paw
BH
,
Alper
SL
.
Authors' response to "comment on: 'homozygous knockout of the piezo1 gene in the zebrafish is not associated with anemia’"
.
Haematologica
.
2016
;
101
(
1
):
e39
.
33.
Kaufman
HW
,
Niles
JK
,
Gallagher
DR
, et al
.
Revised prevalence estimate of possible hereditary xerocytosis as derived from a large U.S. laboratory database
.
Am J Hematol
.
2018
;
93
(
1
):
E9
-
E12
.
34.
Mottelson
M
,
Helby
J
,
Petersen
J
, et al
.
Hereditary stomatocytosis in the general population: a genetically based prevalence estimate from a 109 039 individual Danish cohort
.
Am J Hematol
.
2025
;
100
(
1
):
152
-
157
.
35.
Ma
S
,
Cahalan
S
,
LaMonte
G
, et al
.
Common PIEZO1 allele in African populations causes RBC dehydration and attenuates plasmodium infection
.
Cell
.
2018
;
173
(
2
):
443
-
455.e12
.
36.
Rooks
H
,
Brewin
J
,
Gardner
K
, et al
.
A gain of function variant in PIEZO1 (E756del) and sickle cell disease
.
Haematologica
.
2019
;
104
(
3
):
e91
-
e93
.
37.
Ilboudo
Y
,
Bartolucci
P
,
Garrett
ME
, et al
.
A common functional PIEZO1 deletion allele associates with red blood cell density in sickle cell disease patients
.
Am J Hematol
.
2018
;
93
(
11
):
E362
-
E365
.
38.
Esposito
FM
,
D'Onofrio
V
,
Rosato
BE
, et al
.
Relevance of the E756del common variant in the PIEZO1 gene for haemolytic anaemia and hepatic iron overload
.
Br J Haematol
.
2024
;
206
(
1
):
337
-
341
.
39.
Thye
T
,
Evans
JA
,
Ruge
G
, et al
.
Human genetic variant E756del in the ion channel PIEZO1 not associated with protection from severe malaria in a large Ghanaian study
.
J Hum Genet
.
2022
;
67
(
1
):
65
-
67
.
40.
Andolfo
I
,
Rosato
BE
,
Manna
F
, et al
.
Gain-of-function mutations in PIEZO1 directly impair hepatic iron metabolism via the inhibition of the BMP/SMADs pathway
.
Am J Hematol
.
2020
;
95
(
2
):
188
-
197
.
41.
Picard
V
,
Guitton
C
,
Thuret
I
, et al
.
Clinical and biological features in PIEZO1-hereditary xerocytosis and Gardos channelopathy: a retrospective series of 126 patients
.
Haematologica
.
2019
;
104
(
8
):
1554
-
1564
.
42.
Jankovsky
N
,
Caulier
A
,
Demagny
J
, et al
.
Recent advances in the pathophysiology of PIEZO1-related hereditary xerocytosis
.
Am J Hematol
.
2021
;
96
(
8
):
1017
-
1026
.
43.
Gallagher
PG
,
Chang
SH
,
Rettig
MP
, et al
.
Altered erythrocyte endothelial adherence and membrane phospholipid asymmetry in hereditary hydrocytosis
.
Blood
.
2003
;
101
(
11
):
4625
-
4627
.
44.
Smith
BD
,
Segel
GB
.
Abnormal erythrocyte endothelial adherence in hereditary stomatocytosis
.
Blood
.
1997
;
89
(
9
):
3451
-
3456
.
45.
Abbonante
V
,
Karkempetzaki
AI
,
Leon
C
, et al
.
Newly identified roles for PIEZO1 mechanosensor in controlling normal megakaryocyte development and in primary myelofibrosis
.
Am J Hematol
.
2024
;
99
(
3
):
336
-
349
.
46.
Andolfo
I
,
Monaco
V
,
Cozzolino
F
, et al
.
Proteome alterations in erythrocytes with PIEZO1 gain-of-function mutations
.
Blood Adv
.
2023
;
7
(
12
):
2681
-
2693
.
47.
Kiger
L
,
Oliveira
L
,
Guitton
C
, et al
.
Piezo1-xerocytosis red cell metabolome shows impaired glycolysis and increased hemoglobin oxygen affinity
.
Blood Adv
.
2021
;
5
(
1
):
84
-
88
.
48.
Archer
NM
,
Shmukler
BE
,
Andolfo
I
, et al
.
Hereditary xerocytosis revisited
.
Am J Hematol
.
2014
;
89
(
12
):
1142
-
1146
.
49.
Knight
T
,
Zaidi
AU
,
Wu
S
,
Gadgeel
M
,
Buck
S
,
Ravindranath
Y
.
Mild erythrocytosis as a presenting manifestation of PIEZO1 associated erythrocyte volume disorders
.
Pediatr Hematol Oncol
.
2019
;
36
(
5
):
317
-
326
.
50.
Caulier
A
,
Jankovsky
N
,
Gautier
EF
, et al
.
Red blood cell proteomics reveal remnant protein biosynthesis and folding pathways in PIEZO1-related hereditary xerocytosis
.
Front Physiol
.
2022
;
13
:
960291
.
51.
Moura
PL
,
Hawley
BR
,
Dobbe
JGG
, et al
.
PIEZO1 gain-of-function mutations delay reticulocyte maturation in hereditary xerocytosis
.
Haematologica
.
2020
;
105
(
6
):
e268
-
e271
.
52.
Caulier
A
,
Jankovsky
N
,
Demont
Y
, et al
.
PIEZO1 activation delays erythroid differentiation of normal and hereditary xerocytosis-derived human progenitor cells
.
Haematologica
.
2020
;
105
(
3
):
610
-
622
.
53.
Rosato
BE
,
D'Onofrio
V
,
Marra
R
, et al
.
RAS signaling pathway is essential in regulating PIEZO1-mediated hepatic iron overload in dehydrated hereditary stomatocytosis
.
Am J Hematol
.
2025
;
100
(
1
):
52
-
65
.
54.
Ma
S
,
Dubin
AE
,
Zhang
Y
, et al
.
A role of PIEZO1 in iron metabolism in mice and humans
.
Cell
.
2021
;
184
(
4
):
969
-
982.e13
.
55.
Li
N
,
Zhang
X
,
Zhou
J
, et al
.
Multiscale biomechanics and mechanotransduction from liver fibrosis to cancer
.
Adv Drug Deliv Rev
.
2022
;
188
:
114448
.
56.
Karamatic Crew
V
,
Tilley
LA
,
Satchwell
TJ
, et al
.
Missense mutations in PIEZO1, which encodes the Piezo1 mechanosensor protein, define Er red blood cell antigens
.
Blood
.
2023
;
141
(
2
):
135
-
146
.
57.
Szakacs
G
,
Annereau
JP
,
Lababidi
S
, et al
.
Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells
.
Cancer Cell
.
2004
;
6
(
2
):
129
-
137
.
58.
Mitsuhashi
N
,
Miki
T
,
Senbongi
H
, et al
.
MTABC3, a novel mitochondrial ATP binding cassette protein involved in iron homeostasis
.
J Biol Chem
.
2000
;
275
(
23
):
17536
-
17540
.
59.
Krishnamurthy
PC
,
Du
G
,
Fukuda
Y
, et al
.
Identification of a mammalian mitochondrial porphyrin transporter
.
Nature
.
2006
;
443
(
7111
):
586
-
589
.
60.
Tsuchida
M
,
Emi
Y
,
Kida
Y
,
Sakaguchi
M
.
Human ABC transporter isoform B6 (ABCB6) localizes primarily in the Golgi apparatus
.
Biochem Biophys Res Commun
.
2008
;
369
(
2
):
369
-
375
.
61.
Zutz
A
,
Gompf
S
,
Schägger
H
,
Tampé
R
.
Mitochondrial ABC proteins in health and disease
.
Biochim Biophys Acta
.
2009
;
1787
(
6
):
681
-
690
.
62.
Kiss
K
,
Brozik
A
,
Kucsma
N
, et al
.
Shifting the paradigm: the putative mitochondrial protein ABCB6 resides in the lysosomes of cells and in the plasma membrane of erythrocytes
.
PLoS One
.
2012
;
7
(
5
):
e37378
.
63.
Liu
H
,
Li
Y
,
Hung
KK
, et al
.
Genome-wide linkage, exome sequencing and functional analyses identify ABCB6 as the pathogenic gene of dyschromatosis universalis hereditaria
.
PLoS One
.
2014
;
9
(
2
):
e87250
.
64.
Wang
L
,
He
F
,
Bu
J
, et al
.
ABCB6 mutations cause ocular coloboma
.
Am J Hum Genet
.
2012
;
90
(
1
):
40
-
48
.
65.
Weber
GJ
,
Choe
SE
,
Dooley
KA
,
Paffett-Lugassy
NN
,
Zhou
Y
,
Zon
LI
.
Mutant-specific gene programs in the zebrafish
.
Blood
.
2005
;
106
(
2
):
521
-
530
.
66.
Andolfo
I
,
Alper
SL
,
Delaunay
J
, et al
.
Missense mutations in the ABCB6 transporter cause dominant familial pseudohyperkalemia
.
Am J Hematol
.
2013
;
88
(
1
):
66
-
72
.
67.
Andolfo
I
,
Russo
R
,
Manna
F
, et al
.
Functional characterization of novel ABCB6 mutations and their clinical implications in familial pseudohyperkalemia
.
Haematologica
.
2016
;
101
(
8
):
909
-
917
.
68.
Bawazir
WM
,
Flatt
JF
,
Wallis
JP
, et al
.
Familial pseudohyperkalemia in blood donors: a novel mutation with implications for transfusion practice
.
Transfusion
.
2014
;
54
(
12
):
3043
-
3050
.
69.
Kuwano
K
,
Shimizu
S
,
Fujita
Y
,
Akatsu
S
,
Shibagaki
Y
,
Yazawa
M
.
Marked hyperkalemia due to inappropriate blood sample storage in two suspected cases of familial pseudohyperkalemia
.
CEN Case Rep
.
2023
;
12
(
4
):
397
-
401
.
70.
Meli
A
,
McAndrew
M
,
Frary
A
, et al
.
Familial pseudohyperkalemia induces significantly higher levels of extracellular potassium in early storage of red cell concentrates without affecting other standard measures of quality: a case control and allele frequency study
.
Transfusion
.
2021
;
61
(
8
):
2439
-
2449
.
71.
Helias
V
,
Saison
C
,
Ballif
BA
, et al
.
ABCB6 is dispensable for erythropoiesis and specifies the new blood group system Langereis
.
Nat Genet
.
2012
;
44
(
2
):
170
-
173
.
72.
Egan
ES
,
Weekes
MP
,
Kanjee
U
, et al
.
Erythrocytes lacking the Langereis blood group protein ABCB6 are resistant to the malaria parasite Plasmodium falciparum
.
Commun Biol
.
2018
;
1
:
45
.
73.
Rapetti-Mauss
R
,
Picard
V
,
Guitton
C
, et al
.
Red blood cell Gardos channel (KCNN4): the essential determinant of erythrocyte dehydration in hereditary xerocytosis
.
Haematologica
.
2017
;
102
(
10
):
e415
-
e418
.
74.
Lee
CH
,
MacKinnon
R
.
Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures
.
Science
.
2018
;
360
(
6388
):
508
-
513
. 508.
75.
Klein
H
,
Garneau
L
,
Banderali
U
,
Simoes
M
,
Parent
L
,
Sauvé
R
.
Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis
.
J Gen Physiol
.
2007
;
129
(
4
):
299
-
315
.
76.
Andolfo
I
,
Russo
R
,
Manna
F
, et al
.
Novel Gardos channel mutations linked to dehydrated hereditary stomatocytosis (xerocytosis)
.
Am J Hematol
.
2015
;
90
(
10
):
921
-
926
.
77.
Ghesh
L
,
Besnard
T
,
Joubert
M
,
Picard
V
,
Le Vaillant
C
,
Beneteau
C
.
A Gardos channelopathy associated with nonimmune hydrops and fetal loss
.
Clin Genet
.
2022
;
102
(
6
):
543
-
547
.
78.
Allegrini
B
,
Jedele
S
,
David Nguyen
L
, et al
.
New KCNN4 variants associated with anemia: stomatocytosis without erythrocyte dehydration
.
Front Physiol
.
2022
;
13
:
918620
.
79.
Waldstein
S
,
Arnold-Croop
S
,
Carrel
L
,
Eyster
ME
.
Diagnosing dehydrated hereditary stomatocytosis due to a KCNN4 Gardos channel mutation: understanding challenges through study of a multi-generational family
.
EJHaem
.
2021
;
2
(
3
):
485
-
487
.
80.
Picard
V
,
Guitton
C
,
Mansour-Hendili
L
, et al
.
Rapid Gardos hereditary xerocytosis diagnosis in 8 families using reticulocyte indices
.
Front Physiol
.
2020
;
11
:
602109
.
81.
Rivera
A
,
Vandorpe
DH
,
Shmukler
BE
, et al
.
Erythrocyte ion content and dehydration modulate maximal Gardos channel activity in KCNN4 V282M/+ hereditary xerocytosis red cells
.
Am J Physiol Cell Physiol
.
2019
;
317
(
2
):
C287
-
C302
.
82.
Fermo
E
,
Bogdanova
A
,
Petkova-Kirova
P
, et al
.
'Gardos channelopathy': a variant of hereditary stomatocytosis with complex molecular regulation
.
Sci Rep
.
2017
;
7
(
1
):
1744
.
83.
Fermo
E
,
Monedero-Alonso
D
,
Petkova-Kirova
P
, et al
.
Gardos channelopathy: functional analysis of a novel KCNN4 variant
.
Blood Adv
.
2020
;
4
(
24
):
6336
-
6341
.
84.
Glogowska
E
,
Lezon-Geyda
K
,
Maksimova
Y
,
Schulz
VP
,
Gallagher
PG
.
Mutations in the Gardos channel (KCNN4) are associated with hereditary xerocytosis
.
Blood
.
2015
;
126
(
11
):
1281
-
1284
.
85.
Munaretto
V
,
Martella
M
,
Francescato
S
, et al
.
Severe hemolytic anemia in a newborn: Look out for rare Gardos channelopathies due to KCNN4 mutation
.
Pediatr Blood Cancer
.
2023 Aug
;
70
(
8
):
e30325
.
86.
Nakahara
E
,
Yamamoto
KS
,
Ogura
H
, et al
.
Variant spectrum of PIEZO1 and KCNN4 in Japanese patients with dehydrated hereditary stomatocytosis
.
Hum Genome Var
.
2023. 2
;
10
(
1
):
8
.
87.
Rapetti-Mauss
R
,
Lacoste
C
,
Picard
V
, et al
.
A mutation in the Gardos channel is associated with hereditary xerocytosis
.
Blood
.
2015. 10
;
126
(
11
):
1273
-
1280
.
88.
Zaninoni
A
,
Fermo
E
,
Vercellati
C
, et al
.
Use of laser assisted optical rotational cell analyzer (LoRRca MaxSis) in the diagnosis of RBC membrane disorders, enzyme defects, and congenital dyserythropoietic anemias: a monocentric study on 202 patients
.
Front Physiol
.
2018
;
9
:
451
.
89.
King
MJ
,
Zanella
A
.
Hereditary red cell membrane disorders and laboratory diagnostic testing
.
Int J Lab Hematol
.
2013
;
35
(
3
):
237
-
243
.
90.
Iolascon
A
,
Andolfo
I
,
Barcellini
W
, et al;
Working Study Group on Red Cells and Iron of the EHA
.
Recommendations regarding splenectomy in hereditary hemolytic anemias
.
Haematologica
.
2017
;
102
(
8
):
1304
-
1313
.
91.
Andolfo
I
,
Martone
S
,
Rosato
BE
, et al
.
Complex modes of inheritance in hereditary red blood cell disorders: a case series study of 155 patients
.
Genes (Basel)
.
2021
;
12
(
7
):
958
.
92.
Russo
R
,
Gambale
A
,
Langella
C
,
Andolfo
I
,
Unal
S
,
Iolascon
A
.
Retrospective cohort study of 205 cases with congenital dyserythropoietic anemia type II: definition of clinical and molecular spectrum and identification of new diagnostic scores
.
Am J Hematol
.
2014
;
89
(
10
):
E169
-
E175
.
93.
Paessler
M
,
Hartung
H
.
Dehydrated hereditary stomatocytosis masquerading as MDS
.
Blood
.
2015
;
125
(
11
):
1841
.
94.
Attardi
E
,
Andolfo
I
,
Russo
R
, et al
.
PIEZO1 mutations impact on early clinical manifestations of myelodysplastic syndromes
.
Am J Hematol
.
2023
;
98
(
4
):
E72
-
E75
.
95.
Pinto
VM
,
Russo
R
,
Quintino
S
, et al
.
Coinheritance of PIEZO1 variants and multi-locus red blood cell defects account for the symptomatic phenotype in beta-thalassemia carriers
.
Am J Hematol
.
2023
;
98
(
6
):
E130
-
E133
.
96.
Orvain
C
,
Da Costa
L
,
Van Wijk
R
, et al
.
Inherited or acquired modifiers of iron status may dramatically affect the phenotype in dehydrated hereditary stomatocytosis
.
Eur J Haematol
.
2018
;
101
(
4
):
566
-
569
.
97.
Assis
RAd
,
Kassab
C
,
Seguro
FS
, et al
.
Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging
.
Einstein (Sao Paulo)
.
2013
;
11
(
4
):
528
-
532
.
98.
Grootenboer-Mignot
S
,
Crétien
A
,
Laurendeau
I
, et al
.
Sub-lethal hydrops as a manifestation of dehydrated hereditary stomatocytosis in two consecutive pregnancies
.
Prenat Diagn
.
2003
;
23
(
5
):
380
-
384
.
99.
Glenthøj
A
,
van Beers
EJ
,
van Wijk
R
, et al
.
Designing a single-arm phase 2 clinical trial of mitapivat for adult patients with erythrocyte membranopathies (SATISFY): a framework for interventional trials in rare anaemias - pilot study protocol
.
BMJ Open
.
2024
;
14
(
7
):
e083691
.
You do not currently have access to this content.
Sign in via your Institution