Relative to chymotrypsin, the 60-loop of thrombin contains 8–9 insertion residues which are believed to be partly responsible for the restricted substrate and inhibitor specificity of thrombin. Previous deletion of 3–4 residues of this loop (des-PPW and des-YPPW) dramatically impaired the activity of thrombin toward antithrombin, protein C and fibrinogen, implicating a key role for the productive interaction of these residues with the target macromolecules. To further investigate the role of this loop, we expressed a mutant of thrombin in which all 8 insertion residues (Tyr-Pro-Pro-Trp-Asp-Lys-Asn-Phe) of the 60-loop were deleted (des-60-loop). In contrast to the partially deleted loop mutants, we discovered that des-60-loop thrombin cleaved small synthetic substrates, clotted purified fibrinogen, and activated protein C with a near normal catalytic efficiency; however, its activity toward cofactors V and VIII was impaired ~2–4-fold. Further studies revealed that the reactivity of des-60-loop with antithrombin is not impaired, but rather improved ~2-fold. Remarkably, the mutant could also activate prothrombin to thrombin. These results suggest that the 60-loop plays a key role in regulating the specificity of thrombin by shielding the active-site pocket; however, its productive interaction with the target molecules may not be as critical for the catalytic function of thrombin as has been speculated in previous reports.
Corresponding author