Abstract
Cell-mediated immunity is essential for control of human cytomegalovirus (HCMV) infection. We utilized a pool of 138 synthetic overlapping pentadecapeptides over-spanning the entire pp65 protein to generate polyclonal CMV-specific T-cell lines from 12 CMV-seropositive donors inheriting different HLA genotypes. Autologous monocyte-derived dendritic cells (DCs) pulsed with this complete pool consistently induced highly specific T-cells and in analyses of T-cell lines from 5 separate HLA-A*0201+ individuals demonstrate that this pp65-derived pentadecapeptide-pool selectively induced T-cells specifically reactive against sub-pools of pentadecapeptides which contained the HLA-A*0201 binding epitope NLVPMVATV. The specificity of these T-cells for this immunodominant nonapeptide was confirmed by MHC-tetramer staining and intracellular interferon-γ production, demonstrating that 38 – 60% of the CD8+ cell population were specific for this A*2-restricted peptide after 3 weeks of culture. These T cells also killed both nonapeptide-pulsed and CMV-infected target cells. In subsequent experiments using auotlogous monocyte-derived DC’s pulsed with the pentadecapeptide pool for the stimulation of CMV-specific T-cell lines in individuals other than HLA-A*2, the generated T cells selectively recognized 1–3 pentadecapeptides identified by secondary responses to a mapping grid of pentadecapeptide subpools with single overlaps. Responses against peptide loaded targets sharing single HLA class I or II alleles permitted the identification the restricting HLA alleles. Those T-cell lines from HLA-A*2 neg. donors contained high frequencies of CD4 and/or CD8 T-cells selectively reactive against peptides presented by other HLA alleles including known epitopes such as aa 341–350QYDPVAALF (HLA-A*2402) as well as unreported epitopes such as aa 267–275HERNGFTVL (HLA-B*4001 and B* 4002). In some donors, the peptide-specific IFN-g+ T-cells generated have been predominantly CD4+ T-cells. Like the peptide-specific CD8+ T-cells, we could determine both epitope and HLA-class II restricting element, e.g. aa513–523 FFWDANDIYRI (HLA-DRB1* 1301). These CD4+ T-cells also consistently exhibited cytotoxic activity against infected targets as well as peptide-loaded cells expressing the restricting HLA class II allele. Thus, synthetic overlapping pentadecapeptides spanning the sequence of the immunodominant protein of CMV-pp65, when loaded on DCs can consistently stimulate the in vitro generation of CD8+ and CD4+ T-cell lines from seropositive donors of diverse HLA genotypes. These cell lines are selectively enriched for T-cells specific for a limited number of immunodominant epitopes each presented by a single HLA class I or class II allele. This approach fosters expansion and selection of HLA-restricted CMV-pp65-reactive T-cell lines of high specificity which also lyse CMV-infected targets and may have advantages for generating virus-specific T-cells for adoptive immunotherapy.
Author notes
Corresponding author