Abstract
B-cell chronic lymphocytic leukemia (CLL) is characterized by in vivo accumulation of long-lived CD5+ B cells. However when cultured in vitro CLL cells die quickly by apoptosis. Protection from apoptosis in vivo is believed to result from supply of survival signals provided by cells in the microenvironment. We and others have previously reported that CLL cells express CD40 receptor, and that CD40 stimulation of CLL cells may rescue CLL cells from spontaneous and drug-induced apoptosis in vitro. These observations suggested that blocking CD40-CD40L pathway might deprive CLL cells from survival signals and induce apoptosis. To test this hypothesis, we have generated a fully human anti-CD40 blocking monoclonal antibody in XenoMousemice (Abgenix, Inc.). The antibody CHIR-12.12 was first evaluated for its effect on normal human lymphocytes. Lymphocytes from all 10 healthy blood donors did not proliferate in response to CHIR-12.12 at any concentration tested (0.0001 mg/ml to 10 mg/ml range). In contrast, activating CD40 on normal B-lymphocytes by CD40L induced their proliferation in vitro. Importantly, CHIR-12.12 inhibited CD40L- induced proliferation in a dose dependent manner with an average IC50 of 51 ± 26 pM (n=10 blood donors). The antagonistic activity of CHIR-12.12 was then tested in primary CLL samples from 9 patients. CHIR-12.12 alone did not induce CLL cell proliferation. In contrast, primary CLL cells incubated with CD40L, either resisted spontaneous cell death or proliferated. This effect was reversed by co-incubation with CHIR-12.12 antibody, restoring CLL cell death (n=9). CHIR-12.12 was then examined for its ability to lyse CLL cell line EHEB by antibody dependent cell mediated cytotoxicity (ADCC). Freshly isolated human NK cells from normal volunteer blood donors were used as effector cells. CHIR-12.12 showed lysis activity in a dose dependent manner and produced maximum lysis levels at 0.1 mg/ml. When compared with rituximab, CHIR-12.12 mediated greater maximum specific lysis (27.2 % Vs 16.2 %, p= 0.007). The greater ADCC by CHIR-12.12 was not due to higher density of CD40 molecules on CLL cell line compared to CD20 molecules. The CLL target cells expressed 509053 ±13560 CD20 molecules compared to 48416 ± 584 CD40 molecules. Collectively, these preclinical data suggest that CHIR-12.12 monoclonal antibody may have a therapeutic role in patients with CLL.
Author notes
Corresponding author