Abstract
Graft-versus-host disease (GVHD) is a serious, life-threatening complication that occurs following allogeneic (allo) bone marrow transplantation (BMT). The use of non-specific immunosuppression or T cell depletion has reduced the incidence of GVHD but at the expense of increased rates of infection and leukemic relapse. Modulation of the major costimulatory pathway (CD28/CTLA4:B7) involved in T cell activation and regulation may lead to specific immune tolerance in the absence of global non-specific immunosuppression. The identification of mRNA splice variants encoding for soluble forms of CD28, CTLA4 and GITR suggests that costimulation of T cells is complex and is not limited to cell-cell contact. The present studies examined the hypothesis that the onset of GVHD and the re-establishment of immune tolerance correlate with the expression levels of these costimulatory molecules. mRNA transcript levels for the soluble (s) and full-length (fl; cell surface associated) variants assessed by quantitative PCR, were temporally examined in peripheral blood lymphocytes (PBLs) from patients undergoing alloBMT (n=38) or autologous (auto) BMT (n=39) with the induction of autoGVHD by cyclosporin A treatment post-transplant. Levels of s and fl CD28 mRNA transcripts in PBLs were significantly increased (>1.5 fold, P<0.05) in patients developing either allo or autoGVHD compared to patients who do not develop GVHD. s and flCTLA4 levels in patients at the onset of allo and autoGVHD were significantly decreased compared to healthy controls (n=22) (>2.3-fold, P<0.01). s and flCTLA4 expression in patients with autoGVHD was significantly decreased compared to patients without autoGVHD (>2.1-fold). sCTLA4 expression in patients with alloGVHD was significantly decreased than patients without alloGVHD. Interestingly, temporal analysis revealed that the levels for sCTLA4 paralleled the recovery from GVHD implicating an active process in the establishment of non-responsiveness. CD28, CTLA4 and GITR s and fl mRNA levels in CD4+CD25+ T regulatory (Treg) cells from allo and autoBMT patients were significantly increased (7-, 41- or 22-fold, P<0.01) compared to the CD4+CD25− subset. Additional studies attempted to identify the potential role of the sCTLA4 protein (encoded by the mRNA splice variant) on the regulation of the lymphocyte response mediated by Treg cells. Addition of the Treg cells to a mixed lymphocyte reaction suppressed the proliferative response of CD8+ T cells to alloantigens (75% suppression; >4 fold reduction of 3H-thymidine incorporation). However, pretreatment of the Treg subset with short interfering RNA (siRNA) to knockdown sCTLA4 gene (confirmed by quantitative PCR) significantly reduced the ability of these cells to suppress the response (minimal suppression was detected, 6%). In vitro siRNA studies also indicated that Treg cells with inhibited sCTLA4 expression were unable to suppress the response of IL-2-stimulated autoreactive CD8+ T cells. Taken together, the results indicate that increased expression of CTLA4 (soluble and cell-surface associated) and the “negative” signal delivered by this molecule to the T cell may regulate the development of GVHD and help to re-establish self tolerance after BMT. Defining the role of costimulation and the modulation of this pathway on immune recognition and regulation not only provides opportunities to enhance the re-establishment of tolerance but also may help to intensify anti-tumor immunotherapeutic strategies.
Author notes
Corresponding author