Abstract
Methotrexate (MTX) is an essential treatment component for acute lymphoblastic leukemia (ALL). The ability of leukemia cells to accumulate MTX in its polyglutamylated form (MTXPG) is recognized as an important determinant of its antileukemic effect. We measured in vivo MTXPG accumulation in leukemia cells from 101 children with ALL, and established that blasts of B-lineage ALL with either the TEL-AML1 (n=24 patients, median 911, range 338 to 5906 pmol/109 blasts) or E2A-PBX1 gene fusion (n=5, median 553, range 364 to 800 pmol/109 blasts) or T-lineage ALL (n=14, median 572, range 284 to 1468 pmol/109 blasts) accumulate significantly lower MTXPG, compared to those of other B-lineage ALL (BNHD, n=39, median 2210, range 186 to 9722 pmol/109 blasts) or hyperdiploid ALL (BHD, n=19, median 4375, range 377 to 9206 pmol/109 blasts) (E2A-PBX1 versus BHD, p=0.008; E2A-PBX1 vs. BNHD, p=0.010; TEL-AML1 vs. BHD, p<0.001; TEL-AML1 vs. BNHD, p=0.004; T-ALL vs. BHD and BNHD, p<0.001; p-values are from pair-wise comparisons using Wilcoxon rank sum test, adjusted for multiple testing using Holm’s method). To elucidate mechanisms underlying these differences in MTXPG accumulation, we used oligonucleotide microarrays (Affymetrix® HG-U133A) to analyze expression of 32 folate pathway genes (53 probe sets) in diagnostic bone marrow blasts from 197 children with ALL. This revealed ALL subtype-specific patterns of folate metabolism gene expression and identified differences in gene expression that discriminated the MTXPG accumulation phenotype in ALL cells. We found significantly lower expression of the reduced folate carrier (SLC19A1, MTX uptake transporter) in E2A-PBX1 ALL; significantly higher expression of breast cancer resistance protein (ABCG2, MTX efflux transporter) in TEL-AML1 ALL; and lower expression of FPGS (catalyzes formation of MTXPG) in T-ALL; consistent with lower MTXPG accumulation in these ALL subtypes. These findings reveal distinct mechanisms of subtype-specific differences in MTXPG accumulation and point to new strategies to overcome this potential cause of treatment failure in childhood ALL.
Author notes
Corresponding author