Abstract
Imatinib is an ABL-specific inhibitor that binds with high affinity to the inactive conformation of the BCR-ABL tyrosine kinase and has been shown to be effective in the treatment of chronic myelogenous leukemia. Dasatinib is an ATP-competitive, dual-spesific SRC and ABL kinase inhibitor that can bind BCR-ABL in both the active and inactive conformations. From a clinical stand point, dasatinib is particular attractive because it has been shown to induce hematologic and cytogenetic responses in imatinib-resistant CML patients. In the view of the fact that the combination of imatinib and dasatinib shows the additive/synergistic growth inhibition on a wild type p210 BCR-ABL expressing cells, we reasoned that these ABL kinase inhibitors might induce the different molecular pathways. To address this question, we used DNA microarrays to identify genes whose transcription was altered by imatinib and dasatinib. K562 cells were cultured with imatinib or dasatinib for 16 hrs, and gene expression data was obtained from three independent microarray hybridizations. Almost all of the imatinib- and dasatinib- responsive genes appeared to be similarly increased or decreased in K562 cells; however, small subsets of genes were identified as selectively altered expression by either imatinib or dasatinib. The genes whose expression was affected by imatinib and dasatinib were categorized into different functional groups based on their biological function, and genes in the cell proliferation and apoptosis categories were examined in detail. Imatinib and dasatinib affected the expression of several cyclin-dependent kinases (CDK2, CDK4, CDK6, CDK8, and CDK9), cell division cycle genes (CDC6, CDC7, CDC25C, and CDC34), and cyclones (cyclin A2, C, D2, D3, E1, E2, F, G1, G2, and H). Imatinib and dasatinib also modulated the expression of apoptosis-related genes including APAF1, BAK1, BCL2, BCL10, MCL1, CASP3, and CASP6). One of the distinct genes which are selectively modulated by dasatinib are CDK2 and CDK8, which had a maximal fold reduction of <8-fold in microarray screen. Immunoblotting confirmed that gene expression changes induced only by dasatinib correlated with changes in protein expression. To assess the functional importance of dasatinib regulated genes, we used RNA interference to determine whether reduction of CDK2 and CDK8 affected the growth inhibition. The siRNA to CDK2 or CDK8 specifically reduced cdk2 or cdk8 in K562 cells. K562 cells pretreated with CDK2 or CDK8 siRNA showed the additive growth inhibition with imatinib but not with dasatinib. These finding demonstrate that the additive/synergistic growth inhibition by imatinib and dasatinib may be mediated by CDK2 and CDK8.
Author notes
Corresponding author