Abstract
Interferon regulatory factors (IRF) are activating and/or repressing transcription factors induced by treatment with type I and II Interferon (IFN), other cytokines, receptor cross-linking and viral infection. In contrast to IRF-1 and IRF-2, which are widely expressed, IRF-4 and IRF-8 are tissue-restricted factors. IRF-8 is expressed mainly in cells of haematopoietic origin and has recently been shown to inhibit mitogenic activity of p210 Bcr/Abl-transformed myeloid progenitor cells by activating several genes that interfere with the c-Myc pathway. IRF-4 is most homologous with IRF-8 (approximately 70% overall homology) and its expression is highly restricted to lymphocytes of the B-cell type (pre-B, B, and plasma cells), mature T-cells and macrophages. Furthermore IRF-4 expression is significantly impaired in CML and AML patient samples predominately in T-cells. To examine a potential role of IRF-4 in Bcr/Abl mediated transformation we used a bone marrow transplant model (BMT). We transduced IRF-4 knockout (KO) bone marrow with retrovirus expressing p210 Bcr/Abl and transplanted it into lethally irradiated recipient C57/bl6 mice. For proper control we transplanted also wildtype (WT) bone marrow transduced with Bcr/Abl and mock transfected IRF-4 KO bone marrow (BM). All recipients transplanted with Bcr/Abl transduced BM (regardless of which IRF-4 KO or WT) developed rapidly a myeloproliferative disorder characterized by leukocytosis and expression of the myeloid lineage markers CD11b and Gr1. Surprisingly, IRF-4 KO Bcr/Abl infected BM recipient mice survived slightly longer than the control group transplanted with WT p210 BM (12 vs. 19 days). Histopathologic studies of the affected organs (spleen/lung) revealed extramedullary haematopoiesis in the spleens of both groups and a distinct infiltration of the tumor cells in the lung of WT Bcr/Abl transduced BM recipient mice, resulting in massive punctuated bleedings. Interestingly, preliminary analysis suggest a significantly reduced lung infiltration with almost no pulmonary bleedings in IRF-4 KO Bcr/Abl infected BM recipient mice, which we assume to be the reason for the differences in the overall survival. Taken together our data demonstrate that IRF-4 is not required for the induction of a myeloproliferative disorder by Bcr/Abl in vivo and for its ability to transform BM cells in vitro, but IRF-4 deficiency seems to have an impact on the fulminant pulmonary haemorrhage occurring in the murine CML-like disease.
Author notes
Corresponding author