Abstract
The lack of somatic mutations of the immunoglobulin variable heavy chain (IgVH) gene has been established as poor prognostic marker for chronic lymphocytic leukemia (CLL) patients at early stage disease. Expression of the non receptor tyrosine kinase zeta chain associated protein (ZAP-70) was proposed as a surrogate marker for an unmutated IgVH, however, up to 30% discordant samples have been reported depending on the respective study. B cell receptor (BCR) mediated signaling is enhanced by ZAP-70 expression in CLL cells in vitro and ZAP-70 expression also tends to decrease the time from diagnosis to treatment irrespective of the IgVH status. Therefore, we wanted to identify differentially expressed genes between the ZAP-70 positive and negative CLLs by gene expression profiling of peripheral blood mononuclear cells (PBMCs) using Affymetrix microarrays (HG-U133 Plus 2.0). ZAP-70 expression was analyzed by quantitative real time PCR of CD19 purified (purity > 99%) PBMCs (n=62) using a LightCycler instrument. Expression of ZAP-70 mRNA was normalized against the housekeeping gene ABL and a relative quantitation against Jurkat T cells as a calibrator was performed. Results are expressed as normalized ratio and a cut-off of 0.5 normalized ratio gave the best correlation to the IgVH status with 77% concordant samples between ZAP-70 expression and the IgVH status. The discordant samples consisted of 5 unmutated IgVHs in the ZAP-70 negative group and 9 mutated in the ZAP-70 positive group. In a second step PBMCs of the same samples were analyzed by gene expression profiling and differentially expressed genes were identified by t-test. Among the two best genes that could be used in a classification algorithm (SVM) to distinguish between the 2 subsets with 92% accuracy were ZAP-70 and B cell scaffold protein with ankyrin repeats (BANK1). The expression of BANK1 was increased 3–4-fold in the ZAP-70 negative compared to the ZAP-70 positive CLL subset (P = 0,001). In the literature, BANK1 has been identified in human BCR expressing B cells and seems to be B cell restricted. In B cells the scaffolding protein BANK1 enhances BCR-mediated Ca2+-signaling, a signaling pathway that is also enhanced by ZAP-70 expression in CLL B cells. Based on these data we show that increased BANK1 expression correlates with a ZAP-70 negative status in CLL B cells. The functional consequences of BANK1 expression in the ZAP-70 negative subset of CLL B cells, which are usually associated with a more favorable prognosis, still need to be established further.
Author notes
Corresponding author