Abstract
Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a member of the immunoglobulin cell adhesion super family, which has been implicated in diverse physiological and pathophysiological events involving cell migration. Hitherto, ALCAM’s role in inflammation has not been determined. In this study, we show ALCAM is involved in controlling migration of mononuclear leukocytes across the pulmonary endothelium. We demonstrated that ALCAM is localized at intercellular junctions in pulmonary microvascular endothelial cells in vitro and in vivo. ALCAM co-localized with multiple adherens junction molecules including cadherins, catenins and Dlg, as determined by confocal microscopy, and these observations were confirmed by co-immunoprecipitation and co-distribution assays. Treatment of endothelial cultures with EGTA and cytochalasin D translocated ALCAM from intercellular junctions to the cytosol indicating a requirement for homotypic cadherin adhesion and an intact endothelial cytoskeleton for maintaining ALCAM at endothelial cell junctions. Collectively, these data supports the conclusion that ALCAM contributes to the adherens junction complex in endothelial cells. To determine ALCAM’s role in leukocyte-endothelial cell interactions, adult Sprague Dawley rats were intratracheally instilled with macrophage inflammatory protein-1, and this treatment caused acute expression of ALCAM exclusively in newly recruited mononuclear but not polymorphonuclear leukocytes in the alveolar airway. Given that no ALCAM reactivity was observed in peripheral blood leukocytes, we concluded ALCAM is activated as part of the phenotypic switch by mononuclear leukocytes transitioning from circulation to interstitial tissue compartments. To determine the physiological relevance of this finding we examined whether ALCAM was required for transendothelial migration using monocyte chemoattractant protein 1 (MCP-1). MCP-1 dose- and time-dependently increased the number of transmigrated THP-1 monocytes across pulmonary microvascular endothelial monolayers. Recombinant soluble ALCAM dose-dependently reduced the number of transmigrated THP-1 monocytes, whereas in control experiments recombinant soluble vascular endothelial cadherin had no effect on transmigration. This study shows for the first time that ALCAM is located at endothelial cell junctions where it is intimately involved in controlling the number of monocytes that pass through endothelial barriers. ALCAM may therefore play an essential role in the response to inflammation by enhancing recruitment of mononuclear leukocytes by inflamed tissues.