Abstract
We continue to develop and extend our novel adjuvant therapy approach to lymphoid malignancy. We supplement CHOP with DNA oligonucleotides that mimic the chromosomal telomere, which we call a “T oligo.” These agents are homologous to the 3′ overhang nucleotide sequence of telomeres and have previously been shown to have anti-tumor activity in animal models of malignant melanoma and breast cancer. They are currently being evaluated in melanoma and breast cancer patients. If introduced into human or murine normal, proliferating primary B cells or T cells, T oligo causes transient cell cycle arrest, while exerting no toxicity, but if introduced into human or murine malignant B cells or T cells, the arrest is followed by p53 phosphorylation, p21 message induction and ultimately p53-dependent apoptosis. Other p53-related effector molecules, such as p73, are also likely to be involved. The mechanism immediately suggests a novel method of chemotherapy for leukemia and lymphoma as an adjuvant with CHOP. Furthermore, we have previously shown with in vitro assay and in vivo mouse models of diffuse large B cell lymphoma (DLCL) that T oligo produces a more-than-additive toxicity towards lymphoma cells when combined with vincristine. T oligo alone or in combination with sub-therapeutic doses of CHOP, the standard of care for DLCL, dramatically reduced lymphoma burden in spleen, lung, bone marrow and peritoneum. In combination, which we refer to as T-CHOP, there was a greater reduction in tumor burden than with either therapy alone. We now show in SCID mouse xenograft models of human T cell malignancies, using a Jurkat T cell leukemic line or a MOLT-4 T cell leukemic line that T oligo also works alone to reduce tumor burden dramatically and increase survival. Interestingly, because T oligo-driven apoptosis occurs in p53-null, human lymphoid tumors, even chemotherapy-resistant lymphoid tumors are nevertheless sensitive to T oligo treatment, which may have profound benefit for relapsed leukemia or lymphoma patients.
Disclosures: National Cancer Institute and American Cancer Society.; American Cancer Society.
See also: Longe, H., D. V. Faller, and G. V. Denis (2005). Telomere-based pre-clinical therapy in a murine model of non-Hodgkin’s lymphoma of the diffuse large B cell (DLCL) type. Blood 106: 607.
Author notes
Corresponding author