Abstract
In previous studies we have shown that Signal Transducer and Activator of Transcription 3 (STAT3) negatively regulates inflammatory responses in myeloid cells and plays a central role in determining immune activation versus immune tolerance of antigen-specific CD4+ T-cells. Indeed, in Stat3 knock out mice (LysMcre/Stat3flox/−) in which macrophages and neutrophils are devoid of Stat3, we found that in response to a tolerogenic stimulus (high dose peptide-induced tolerance or tumor-induced tolerance models) adoptively transferred antigen-specific CD4+ T-cells are not tolerized but instead are effectively primed as determined by their production of IL-2 and IFN-gamma in response to cognate antigen. Such an observation led us to investigate which cell population(s) is required for the priming effect observed in Stat3 KO mice. First, we used anti-Gr-1 antibody to deplete neutrophils in wild type BALB/c mice as well as Stat3 KO mice. Briefly, half the mice in each group were treated with 0.5mg of the antibody given i.p. every 3 days from day-3 until day +15. On day zero, all the mice were adoptively transferred with 2.5 x 106 naïve transgenic CD4+ T-cells specific for a MHC class II restricted epitope of hemaglutinin (HA). On day +2, animals received high dose of HA peptide (275 mcg) given i.v. Mice were sacrificed on day +15 and clonotypic T-cells were re-isolated from their spleens to assess their functional status following their in vivo exposure to this tolerogenic stimuli. A striking difference was observed in T-cells isolated from Stat3 KO mice with an intact neutrophil compartment (non-depleted) versus T-cells from anti-Gr-1 treated LysMcreStat3flox/− mice. Unlike T-cells from the former group in which priming was the functional outcome, clonotypic T-cells from LysMcreStat3flox/− mice depleted of neutrophils, were found to be anergic. Therefore, the T-cell priming effect observed in LysMcreStat3flox/− mice requires an intact neutrophil compartment given that in the absence of this population, tolerance not priming was the functional T-cell outcome. To gain insight into the potential mechanism(s) by which neutrophils devoid of Stat3 influence T-cell responses, we next analyzed the phenotypic and functional properties of neutrophils isolated from Stat3 KO mice and wild type controls. First, the lack of expression of MHC class II molecules by neutrophils from WT and KO mice made unlikely the possibility that neutrophils devoid of Stat3 could directly present antigen to CD4+ T-cells. However, when neutrophils from Stat3−/− conditional mice were added to macrophages monolayers in vitro, the antigen-presenting capabilities of macrophages was significantly enhanced as determined by the increased production of IL-2 and IFN-gamma by antigen-specific T-cells encountering cognate antigen in these APCs. Furthermore, macrophages cultured in vitro with neutrophils from Stat3−/− conditional mice were able to restore the responsiveness of tolerant CD4+ T-cells. This effect that was not observed when tolerized T-cells encountered cognate antigen in macrophages incubated with neutrophils from wild type mice. Trans-well experiments demonstrated that the regulatory effect of neutrophils upon APCs function required cell-cell contact. Taken together, we have unveiled a previously unrecognized role of neutrophils in determining the functional outcome of antigen-specific T-cell responses, effect that is dependent upon the interaction of neutrophils with antigen-presenting cells.
Author notes
Disclosure: No relevant conflicts of interest to declare.