Abstract
Aurora A kinase is a serine/threonine protein kinase that is essential for normal transit of cells through mitosis. In many tumor types the Aurora A gene is amplified and/or the protein is over-expressed. The Aurora A small-molecule inhibitor MLN8237 demonstrated robust tumor growth inhibition in xenograft models of solid tumors grown subcutaneously (S.C.) in immunocompromised mice. Here we explored the antitumor activity of MLN8237 in models of diffuse large B-cell lymphoma (DLBCL) both in vitro and in vivo. In vivo three established DLBCL xenograft models (OCI-Ly7, OCI-Ly19, and WSU-DLCL2; all cells expressing luciferase) and a primary DLBCL tumor model PHTX-22-06 were tested using MLN8237 at different doses. Rituximab, an anti-CD20 monoclonal antibody that is active against CD20+ malignant B cells and is a standard of care agent was used for comparison. Using these model systems, tumor cells were injected either I.V. (to evaluate disseminated disease), or S.C. in severe combined immunodeficient mice (SCID). Animals were dosed orally for 21 days with MLN8237 (QD or BID) at various doses, or Rituximab dosed at 10mg/kg IV (once/week) and tumor growth inhibition was monitored using either bioluminescent imaging for the disseminated models or vernier calipers for the S.C. models. Tumor growth inhibition by MLN8237 was dose dependent with 20 mg/kg bid being the most efficacious dose (TGI>100% in both disseminated OCI-Ly19 and WSU models). All animals in the OCI-Ly19 disseminated model 20 mg/kg BID treatment group demonstrated regressions and remained disease free until the end of the study, day 65. In this study the Rituximab treated animals were euthanized on day 31 due to a high level of tumor burden. In the primary tumor model, PHTX-22-06, MLN8237 dosed at 20 mg/kg BID was also the most efficacious with a TGI of 95%. Moreover, tumor growth inhibition was durable as determined by prolonged tumor growth delay (>50 days). Significant efficacy was achieved in all models tested, whether grown as disseminated or subcutaneous models. A noted increase in durability of response was observed with MLN8237 treatment when compared with previous data from solid tumor models. In vitro, MLN8237 treatment increased levels of apoptosis in the OCI-Ly19 cells in comparison to the solid tumor cell line HCT-116 (colon). Greater Annexin V positive cells and greater cleaved PARP and Caspase-3 signals were detected in the MLN8237 treated OCI-Ly19 cells when compared to HCT-116 cells. The demonstration of robust and durable anti-tumor activity in preclinical models treated with MLN8237 provides the basis for its clinical evaluation as a treatment option for DLBCL. MLN8237 is currently in multiple Phase I clinical trials.
Disclosures: No relevant conflicts of interest to declare.
Author notes
Corresponding author