Abstract
Signal transducer and activator of transcription 3 (Stat3) is a key signaling intermediate that is activated by several cytokines that regulate hematopoiesis, including granulocyte-colony stimulating factor (G-CSF), interleukin 6, and stem cell factor (SCF). Studies using mice with Stat3 deletion targeted to hematopoietic cells have shown that Stat3 negatively regulates basal granulopoiesis but positively regulates emergency granulopoiesis. Stat3 also has been reported to promote B lymphocyte differentiation. Defining the hematopoietic functions of Stat3 is further complicated by the existence of two isoforms: full-length Stat3α (p92), and truncated Stat3β (p83). Stat3β is derived from alternative mRNA splicing resulting in replacement of the C-terminal transactivation domain with 7 unique amino acids (CT7), which have been demonstrated to confer markedly prolonged nuclear retention. Homozygous Stat3α-deficient mice are not viable, whereas Stat3β-deficient mice survive to adulthood and are fertile, but have increased inflammatory responses compared to wild-type mice. We compared basal granulopoiesis and lymphopoiesis, as well as emergency granulopoiesis, in homozygous Stat3β-deficient mice (βΔ/βΔ), which express only Stat3α, vs. their wild-type (+/+) littermates. We found that βΔ/βΔ mice were significantly leukopenic (2880 ± 1260/ml v. 4600 ± 1670/ml; p<0.05), with lower absolute neutrophil counts (ANC, 360 ± 180/ml v. 800 ± 380/ml, p<0.05) and B lymphocyte counts (780 ± 470/ml v. 1830 ± 1260/ml, p<0.05), compared to +/+ mice. Within the circulating B-lymphocyte population, the mature B220hi/IgM− cells were most dramatically reduced (170 ± 70/ml v. 480 ± 350/ml, p<0.05). Percentages of myeloid and lymphoid cells in the spleen and bone marrow were not significantly different between βΔ/βΔ and +/+ mice. Bone marrow from βΔ/βΔ mice generated significantly fewer myeloid colonies (CFU-GM) compared to wild-type marrow (28 ± 9 v. 42 ± 8 colonies per 20,000 cells, p<0.05). Additionally, βΔ/βΔ lineage-depleted bone marrow cells cultured in G-CSF and SCF produced significantly fewer CD11b+/Gr1+ myeloid cells compared to +/+ cells (52.8 ± 6.5% v. 68.3 ± 2.6%, p<0.05). In contrast, bone marrow from βΔ/βΔ and +/+ mice produced equal numbers of pro-B colonies in CFU assays containing the lymphopoietic cytokine IL-7. Finally, as a test of emergency granulopoiesis, we administered a single dose of G-CSF (250 μg/kg subcutaneously) or an equal volume of PBS, and 24 hr later measured the ANC, percentage of CD11b+/Gr1+ myeloid cells in the bone marrow, and CFU-GM generation. Mice of both genotypes responded to G-CSF stimulation with increases in ANC, percent of myeloid cells within the marrow, and CFU-GM. Bone marrow from βΔ/βΔ mice showed a larger G-CSF-induced increase in CFU-GM (PBS: 22 ± 5 v. G-CSF: 39 ± 1, p<0.05) compared to +/+ marrow (PBS: 24 ± 14 v. G-CSF: 31 ± 14, NS). Thus, Stat3β positively regulates basal granulopoiesis in the bone marrow, and may negatively regulate emergency granulopoiesis. This pattern is the opposite of that seen with deletion of both Stat3 isoforms, indicating that Stat3α’s function is to negatively regulate basal granulopoiesis and positively regulate emergency granulopoiesis. Stat3β also positively regulates circulating B lymphocyte numbers, via a mechanism other than B lymphocyte production in the bone marrow.
Disclosures: No relevant conflicts of interest to declare.
Author notes
Corresponding author