Abstract
Abstract 1597
Hemp (hematopoietic expressed mammalian polycomb, also denoted as mbt-containing 1) gene was originally identified in the hematopoietic stem cell (HSC)-enriched fraction of the mouse fetal liver (FL). It encodes a protein containing a putative Cys2-Cys2 zinc-finger region, followed by four tandem malignant brain tumor (MBT) repeats, which is frequently observed in polycomb gene (PcG) proteins. The structural characteristics strongly suggest that Hemp functions as an epigenetic regulator, but its biological role remains unknown. To address this issue, we generated hemp-deficient (hemp–/–) mice. Hemp–/– mice died soon after birth. Although no abnormalities were detected in internal organs, skeletal analysis exhibited a variety of malformations. Severe deformities were observed in the thoracic cavity, strongly suggesting that hemp–/– mice died of respiratory failure. Interestingly, they showed malformations of cervical and thoracic vertebrae, which were different from typical homeotic transformations observed in PcG-deficient mice. These results suggest that Hemp governs downstream target genes in distinct manners from conventional PcG proteins.
The hematopoietic analysis of hemp in the FL showed that hemp is preferentially expressed in CD150+LSK and CD150–LSK HSC fractions in the hematopoietic hierarchy. Hemp–/– FL contained a significantly reduced number of hematopoietic cells and produced fewer number of hematopoietic colonies as compared to hemp+/+ FL. The decreases correlated with reduced number of CD150+LSK HSCs in hemp–/– FL, which generated much fewer hematopoietic colonies in the HPP-CFC assay. In addition, the competitive repopulation assay exhibited that the hematopoietic reconstitution ability of hemp–/– FL CD150+LSK HSCs was significantly impaired. Moreover, microarray analysis revealed that expression levels of several genes, such as Prdm16, Sox4, and Erdr1 were altered in hemp–/– FL HSCs.
Since hemp–/– mice died at neonate, the role of Hemp in adult hematopoiesis remains to be elucidated. To address this issue, we generated hemp conditional knockout (cKO) mice. Acquired deletion of Hemp in the hematopoietic tissues was successfully achieved by crossing hempflox/flox mice with MxCre mice and stimulating the compound mice with pIpC. Analysis of the hematopoietic tissues revealed that the cell numbers of Mac+Gr1– and Mac+Gr1+ fractions in the hemp cKO bone marrow (BM) were significantly increased and decreased, respectively, as compared to those of the wild-type BM. However, no apparent differences have so far been observed between hemp cKO and wild-type littermates in functional analyses, such as colony forming activity and competitive repopulation ability of the BM cells.
Here, we report that a novel MBT-containing protein, Hemp, plays essential roles in skeletal formation and HSC function during embryogenesis and also contributes to myeloid differentiation in adult hematopoiesis. Since Hemp likely functions as an epigenetic regulator, further studies will be required to clarify whether and what methylated lysine residues Hemp interacts with through the MBT repeats, what kind of genes are direct targets of Hemp, and how Hemp exerts its biological activity.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.