Abstract
Abstract 1601
The dysfunction of human diabetic CD34+ endothelial progenitor cells limits their utility in autologous cell therapy for vascular complications. Previously, we showed that transient inhibition of transforming growth factor-beta 1 (TGF-β1) enhances vascular reparative function of human CD34+ cells isolated from diabetics (Bhatwadekar et al, 2010). Expression of PAI-1, the major gene product of TGF-β1 activation, is increased by high glucose and insulin exposure in endothelial cells and PAI-1 has been shown to be increased in the serum of diabetics. We asked whether the beneficial effects of TGF-β1 blockade on CD34+ cells function were mediated by inhibition of PAI-1 and whether blocking of PAI-1 could correct diabetes associated dysfunction of these cells.
Plasma determinations of PAI-1 and TGF-β1 (both measured by ELISA) were compared in type 2 (n=17) and type 1 (n=7) diabetic patients. CD34+ cells from these individuals were isolated and analyzed for cell survival (in the presence and absence of growth factors), cell proliferation, cell cycle analysis and migration. The effect of TGF-β1 phosphorodiamidate morpholino oligomers (PMO) treatment on PAI-1 level was determined in CD34+ cells. In CD34+ cells, PAI-1 was blocked using either lentivirus expressing PAI-1 shRNA or PAI-1 siRNA. In vivo homing ability of PAI-1 inhibited CD34+ cells was assessed using an ocular model of ischemia/reperfusion (I/R) Injury.
Plasma PAI-1 level was increased in type 2 diabetic patients compared to type 1 (p<0.05) and directly correlated with TGF-β1 plasma levels (r= 0.44). TGF-β1 PMO treatment resulted in a reduction of PAI-1 mRNA expression (p=0.0018 in diabetic, p=0.05 in non-diabetic). PAI-1 blockade promoted EPC proliferation in vitro and bypassed the inhibitory effect of TGF-β1 on cell survival (p<0.001) even in the absence of growth factors. PAI-1 blockade enhanced the migration of these cells in response to SDF-1α in (p<0.01) compared to cells treated with scrambled siRNA and improved the in vivo re-endothelialization by CD34+ cells in the I/R model.
Our results suggest that the cytostatic activity of TGF-β1 in CD34+ cells is mediated largely through PAI-1. Blocking PAI-1 corrects multiple defects in CD34+ cells from type 2 diabetic patients. This approach may offer a promising therapeutic strategy for restoring vascular reparative function in diabetic cells and facilitate their use in autologous cell therapy.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.