Abstract
Abstract 2492
Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia caused by reciprocal translocations of the long arms of chromosomes 15 and 17, which prevent cellular differentiation into mature neutrophils. The translocation of the promyelocytic leukemia (PML) gene on chromosome 15 and a retinoic acid receptor α (RARα) gene on chromosome 17 generates a PML-RARα fusion protein that inhibits PML-dependent apoptotic pathways in a dominant negative fashion. This fusion protein also blocks granulocytic differentiation by direct transcriptional inhibition of retinoic acid target genes. All-trans retinoic acid (ATRA) arrests cell growth, granulocytic differentiation, and apoptosis in APL cells via proteasome-dependent degradation of PML-RARα fusion protein and subsequent PML-nuclear body (NB) formation. Although PML is the essential component of PML-NBs and functions as a tumor suppressor, disruption of PML-NBs by the PML-RARα fusion protein inhibits endogenous PML tumor-suppressive functions in APL cells. Therefore, degradation of PML-RARα fusion protein and reorganization of PML-NBs during ATRA treatment are regarded as critical cellular responses, similar to the cell growth arrest and apoptosis of leukemia cells. Recently we demonstrated that FoxO3a (also named FKHRL1), a member of the Forkhead family of transcription factors, is a key molecule for the ATRA-induced cellular responses in APL cells (Blood 2010; 115: 3787–3795). In this study, we investigated the mechanism by which FoxO3a is activated by ATRA treatment in a human promyelocytic leukemia cell line NB4. Okadaic acid, a potent PP2A inhibitor, cancelled ATRA-induced dephosphorylation of AKT and its downstream molecule FoxO3a in NB4 cells. Knockdown of endogenous PP2A by siRNA significantly enhanced phosphorylation of both AKT and FoxO3a. These results suggested that PP2A is involved in ATRA-induced dephosphorylation of AKT and FoxO3a. Concomitantly, PP2AC, a catalytic subunit of PP2A, was dephoshorylated at tyrosine 307, and phosphatase activity of PP2A increased after ATRA treatment. Co-immunoprecipitation assay revealed that PP2A constitutively and directly binds to FoxO3a. Using artificial oligopeptides, we demonstrated that enhanced PP2A activity by ATRA directly dephosphorylates phosphothreonine 32 on FoxO3a. In addition, we found that 14-3-3 epsilon binded to phosphorylated FoxO3a in the cytoplasm in the absence of ATRA. After ATRA treatment, however, dephosphorylated FoxO3a dissociated from 14-3-3 epsilon and moved into the nucleus. Confocal microscopic analysis revealed that PP2A-FoxO3a complex partially co-localized with PML-NBs in the nucleus after ATRA treatment. Together, PML orchestrates nuclear networking with PP2A and FoxO3a for ATRA-induced granulocytic differentiation and apoptosis of APL cells.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.