Abstract
Abstract 3217
The zinc finger protein Erythroid Krüuppel-like factor (EKLF, KLF1) regulates definitive erythropoiesis and terminal differentiation of red blood cells. KLF1 facilitates transcription through high affinity binding to CACCC elements within its erythroid-specific target genes which include genes encoding erythrocyte membrane skeleton (EMS) proteins. Deficiencies of EMS proteins lead to the hemolytic anemia Hereditary Spherocytosis (HS). We have identified a new HS gene by studying the hemolytic anemia mouse mutant Nan (Neonatal Anemia). Here we report that a mutation, E339D, in the second zinc finger domain of KLF1 is responsible for HS in Nan mice. The causative nature of the E339D mutation was verified with an allelic test cross between Nan/+ and heterozygous Klf1+/− knockout mice. Homology modeling predicted Nan KLF1 binds CACCC elements more tightly, suggesting that Nan KLF1 is a competitive inhibitor of wild type KLF1. Competitive inhibition may help explain the apparent disconnect between the finding that Nan/+ heterozygous mice are anemic, whereas Klf1+/− heterozygous mice are normal and haplo-sufficient. This is the first direct association of a KLF1mutation with a disease in adult mammals. After examining a small population of HS patients, we also discovered one HS patient with a KLF1 mutation, which resulted in a significant amino acid substitution (T251I) in the activator/repressor domain, 28 amino acid residues upstream of the first zinc finger domain. This HS subject had no known mutations in the exons or intron/exon boundaries of EMS genes (SPTA1, SPTB, ANK1, SLC4A1) which comprise 85% of HS mutations in humans. The lack of a known genetic mutation in EMS genes leaves this patient's KLF1 mutation as the leading candidate defect. The identification of the gene causing the Nan mutation is significant because the Nan mutant has allowed discovery of a new HS gene which may also cause this disease in humans. In addition, the putative dominant/negative competitive inhibition of the Nan mutation makes the Nan mouse an excellent model system to study the function of KLF1.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.