Abstract
Abstract 340
Presently, blood transfusion products (TP) are composed of terminally differentiated cells with a finite life span. We attempted to develop an alternative TP which would be capable of generating additional red blood cells (RBC). Several histone deacetylase inhibitors (HDACIs) were used in vitro to reprogram cord blood (CB) CD34+ cells to differentiate to erythroid progenitor cells (EPC). We demonstrated that CB CD34+ cells in the presence of HDACIs (SAHA, VPA and TSA), and a combination of cytokines SCF, IL-3, TPO and FLT3, promoted expansion of CD34+ cells and CD34+CD90+ cells as compared to cultures containing cytokines alone. Addition of VPA resulted in the greatest expansion of CD34+ cells, CD34+CD90+cells+ (59.4 fold, p=0.01; 66.7 fold, p=0.02, respectively) as compared to SAHA and TSA. VPA also led to the generation of the greatest absolute number of EPC cells (14.9×106, p=0.002), approximately a 5500 fold in the numbers of assayable EPC, as compared to primary CB.
The single cell analyses of CB CD34+ cells (Day0) and single CD34+ reisolated from ex-vivo cultures pretreated with cytokines alone or cytokines+VPA demonstrated an skewed differentiation program of CD34+ cells to EPC (>94%, p=0.003) compared to CB CD34+(50%) and cytokines alone (29%).
We investigated the expression of lineage specific phenotypic markers expressed by CD34+ cells exposed to cytokines alone or cytokines plus VPA. The FACS analyses showed a significantly greater proportion of CD34+CD36+ (52.4% vs 21.0%) CD36+CD71+(44.5% vs7.6%), CD36+GPA+(12.8% Vs 4.0%) and CD71+GPA+(22.2% vs 6.3%) cells with lower numbers of CD19+(2.8% vs 13.6%) cells, CD14+(2.0% vs 8.9%), CD15+(1.8 vs 6.9%) in VPA treated CD34+ cells as compared to cytokines alone.
We monitored the relative expression of a group of genes characteristic of both primitive HPC and erythroid commitment (Bmi1, Dnmt1, Ezh2, Smad5, Eklf, GATA1, GATA2, EpoR and Pu.1). Q-PCR was performed on CD34+cells reisolated from cultures treated with cytokines alone or cytokines plus VPA and compared to primary CB CD34+ cells. The expression of genes associated with retention of the biological properties of the primitive HPC (Bmi1-2.6 fold, Dnmt1-10.3 fold and Ezh2-4.8 fold) and erythroid lineage specific genes (Smad5-6.2 fold, GATA2-3.7 fold) were upregulated and Pu.1 (0.6-fold), GATA1(1.9 fold) were downregulated as compared to cytokines alone. However, expression of EpoR and Eklf were similar in the two cell populations
Histone acetylation study showed that the CB CD34+ cells and VPA treated CD34+ cells had a significant proportion of acetylated H3K9 cells, 52.2% and 56.1% respectively, while this population was virtually absent in CD34+ cells exposed to cytokines alone (1.3%, p=0.001). ChIP assay demonstrated a varying degree of H3K9/14 and H3K27 acetylation within the promoters of VPA treated CD34+ cells for GATA2 (7.4 fold, 7.2 fold), Eklf (7.4 fold, 9.7 fold), Pu.1(4.5fold, 4.8 fold), EpoR (2.3 fold, 4.7 fold) and GATA1(4.7 fold, 2.9 fold). The acetylation of cytokines treated CD34+ cells were much lower than VPA treated CD34+ cells.
The VPA treated cell product after 9 days (supplemented with SCF, Epo and IL-3 for 2 additional days) compared to 7 days contained a greater percentage of EPC and erythroid precursor cells CD34+CD36+(24.9% vs 23.0%), CD36+GPA+(33.9% vs 18.8%), CD36+. CD71+(55.8% vs 37.8%), CD71+GPA+(33.9% vs 20.5%) and CD34+CXCR4+(28.8% vs 21.0 %). The TP contained very limited number of CD19+(1.4%), CD14+(11.11%) or CD15+(6.8%) of cells. Approximately 50 % of the cells present in the TP expressed the chemokine receptor CXCR4.
We next evaluated the behavior of ex vivo expanded cell product following transfusion into sublethally irradiated NOD/SCID mice. FACS analyses of mice peripheral blood (PB) on serial days showed evidence of circulating nucleated erythroid and enucleated red cells. The greatest number of circulating human RBC (12.4%±6.8%) was observed on day5. RT-PCR analyses on the PB of mice on day 15 revealed the presence of erythroid cells containing both human adult and fetal hemoglobin. On day 15 the mice were sacrificed and the degree of human cells engraftment in the marrow were predominately hu -CD45+ (7.4%), CD34-CD36+(1.8%), CD36 (4.5%) and GPA+(1.7%) with no evidence of CD33+, CD14+, CD19+ and CD41+ cells. The ex vivo generated EPC-TP likely represents a paradigm shift in transfusion medicine due to its continued ability to generate additional RBC.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.