Abstract 1300

Mutations in RUNX1 and CBFB are among the most common genetic alterations in hematologic malignancies, including acute myeloid and lymphoid leukemia (AML, ALL), chronic myelomonocytic leukemia (CMML), myelodysplastic syndrome and myeloproliferative neoplasms. Loss of Runx1-CBFb causes a failure of hematopoietic stem cell emergence during embryogenesis. Critical roles for Runx1-CBFb in adult hematopoiesis include hematopoietic stem and progenitor homeostasis, and lymphoid and megakaryocytic differentiation. We took an unbiased co-immunoprecipitation and mass spectrometry approach to identify Runx1-CBFb co-regulators in T cells, and identified chromodomain helicase binding protein 7 (CHD7) as a potential interacting partner. CHD7 is an ATP-dependent chromatin remodeling protein that primarily occupies enhancer and promoter regions. Autosomal dominant mutations in CHD7 cause CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities and deafness). It was shown that CHD7 interacts with Sox2, and its occupancy correlates with H3K4me1/2 modifications and P300 binding at enhancer regions, and H3K4me3 marks at promoters. We confirmed the interaction of endogenous Runx1 and CHD7 in T cells. We demonstrate that the Runx1 transactivation domain, which is critical at all stages of hematopoiesis, is required for the CHD7 interaction. To elucidate an in vivo function for CHD7 in hematopoiesis, we generated a conditional pan-hematopoietic Chd7 deletion in mice using a floxed Chd7 allele and Vav1-Cre. Deletion of Chd7 in hematopoietic cells appears to cause no lineage specific defects. However, CHD7 deficient bone marrow cells had a competitive advantage in T cell reconstitution as compared to wild type cells, suggesting a role for CHD7 in restraining T cell numbers in the adult. Determining how CHD7 exerts its functions should shed light on underlying mechanisms in hematopoietic stem cell formation, T cell development, and hematopoietic malignancies.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution