Abstract
Abstract 3394
Hematopoietic stem cells (HSC) replenish the cellular components of the blood throughout life by a homeostatic process in which the majority of HSCs remain quiescent while a small percentage enter the cell cycle to either self-review or differentiate. During inflammatory responses to infections, Interferons (IFNa, IFNg) perturb HSC homeostasis, presumably in response to the demand for increased numbers of inflammatory cells. Previous studies have highlighted an apparent paradox, i.e. IFNs suppress the proliferation of normally cycling murine hematopoietic progenitor cells (HPCs), yet increase the fraction of normally quiescent Sca+ HSCs that proliferate. To investigate the mechanisms underlying this paradox, we dissected the dynamics of cell surface phenotypes, cell cycle kinetics, pro- and anti-apoptotic pathways within the HSC and HPC compartments in response to pIpC and IFNs both in vivo and in vitro. Forty-eight hours after pIpC injection, bone marrow (BM) cellularity declined by 60%, the proportion of Sca- kit+ HPCs fell from 0.45% to 0.05%, while the proportion of BM cells with the Sca+ kit+ HSC phenotype increased from 0.17 to 0.26%. To determine whether the increase in Sca+kit+ cells was due to proliferation of HSCs or upregulation of Sca-1 on HPCs, we cultured purified CD150+ Sca-Kit+ HPCs and CD150+Sca+kit+ HSCs in vitro with IFNa, IFNg, or PBS. Sca expression was induced on previously Sca- HPCs, and the level of Sca expression on HSCs was also increased. This induction was detectable as early as 6 hours after treatment and accompanied by an increase in Sca mRNA. BrdU incorporation into both HPC and HSC populations decreased from pre-treatment baselines, further indicating that the increase in cells with the HSC phenotype was not due to HSC proliferation, but rather the appearance of cycling HPCs within the HSC staining gate following IFN-induced upregulation of Sca. Staining with FITC-DEVD-FMK identified active cleaved capase-3 in pIpC- or IFN-treated cells, suggesting that the reduced cellularity following IFN reflected a cellular stress that killed Lin+ precursors cells and some HPCs, but spared HSCs. In contrast to lin+kit- precursors, all kit + HPCs and HSCs expressed bcl-2, suggesting that expression of anti-apoptotic proteins may prevent IFN-induced stress from resulting in HSC/HPC apoptosis despite the initial triggering of caspase-3 cleavage. In summary, acute treatment with IFNs has anti-proliferative effects on all hematopoietic cells, including precursors, HPCs and HSCs, with the apparent increase in HSC proliferation the result of HPCs masquerading as Sca+HSCs after exposure to IFN. Unlike precursors, HSCs and some HPCs survive treatment to IFNs despite activation of cleaved caspase-3, possibly due to their expression of bcl-2, and likely related anti-apoptotic regulators. The previously observed increase in HSC proliferation days and weeks following IFN treatment is most likely due to the homeostatic response of HSCs to the depopulation of the precursor and HPCs caused by acute IFN exposure.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.