Abstract
Abstract 4967
Rituximab-chemotherapy relapsed/refractory (r/r) B-cell lymphomas represent an emerging clinical challenge that underlies the need to develop alternative therapeutic strategies. A better understanding of the mechanism(s)-of-action of BTZ and other proteasome inhibitors (PI) is likely to aid in the identification of biomarkers that can be used to determine clinical responsiveness and/or help in the rational development of novel PI-based therapeutic combinations (e.g. incorporating biologics, small molecules and/or chemotherapy) in r/r B-cell lymphoma. Previously we demonstrated that rituximab resistance was associated with increased proteasome activity leading to a de-regulation in the apoptotic threshold of lymphoma cells to multiple chemotherapy agents. Pharmacological and genetic (e.g. siRNA silencing of BAK/BAX) inhibition of apoptosis partially affected BTZ activity in rituximab-resistant (RSCL) but not in rituximab-sensitive cell lines (RSCL) suggesting the existence of alternative pathways of cell death associated with PI exposure. To this end we evaluated the contribution of cellular senescence, cell cycle inhibition, or mitotic catastrophe to the anti-tumor activity of BTZ as a single agent or in combination with chemotherapeutic agents in RSCL, RRCL and in primary tumor cells. Lymphoma cells were exposed to BTZ (10-25nM) for 24–48 hrs. Cell senescence was determined by SA-β-gal staining using a senescence assay kit and inverted phase-contrast microscopy was performed. Changes in cell cycle were analyzed by the FACScan DNA method and changes in cell cycle regulatory proteins (i.e. cdc2, cyclinA/B, p21, CDK2/4/6) were analyzed by Western blotting. Mitotic index was determined by Wright-Giemsa stain and positive cells were counted under a Nikon microscope. Mitotic catastrophe was determined by confocal microscopy by staining with α-tubulin antibody. Finally, changes in ATP content was determined by the Cell Titer Glo assay. Baseline differences were observed between RSCL and RRCL in terms of cell morphology, proliferation rate and senescence. RRCL (Raji2R and Raji4RH) were considerably larger in size, had a slower proliferation rate and an exhibited a 3-fold increase the number of cells in senescence than RSCL. In vitro exposure of RSCL and RRCL to BTZ attenuated the number of cells in senescence by 50–75%. Cell cycle analysis demonstrated that RRCL had more cells in S phase when compared to RSCL. In vitro exposure to BTZ-induced G2/M arrest in RRCL, but not in RSCL. Overexpression of G2/M cell cycle regulatory proteins cyclin B and cdc2 were observed in RRCL and in tumor cells isolated from r/r B-cell lymphoma patients. Mitotic catastrophe with multi-nucleated cells were only detected in RRCLs exposed to BTZ. In vitro and ex vivo exposure of RSCL and RRCL to BTZ potentiated the cytotoxic effects of paclitaxel and overcame the acquired resistance to chemotherapy drugs in RRCL and primary tumor cells isolated from r/r lymphoma patients in a dose-dependent manner. Our results suggested that BTZ activates several death pathways in B-cell lymphoma pre-clinical models. In addition to apoptosis, BTZ is capable in triggering mitotic catastrophe in rituximab-chemotherapy lymphoma cells with decreased levels of pro-apoptotic proteins. Moreover, sensitization of RRCL to drug therapy involves interplay between cellular senescence attenuation, G2/M cell cycle regulation, and mitotic catastrophe. Hence, proteasome inhibition may provide a novel therapeutic approach for treating apoptosis-resistant B-cell lymphoma. Research, supported in part as a subproject of NIH grant R01 CA136907-01A1 awarded to Roswell Park Cancer Institute.
Hernandez-Ilizaliturri:Genmab: Research Funding; Amgen: Research Funding; Celgene: Consultancy. Czuczman:Millennium: Honoraria, Research Funding.
Author notes
Asterisk with author names denotes non-ASH members.