Osteoblasts are one of the important cellular components of the niche for hematopoietic stem cells (HSCs) in mammalian bone marrow (BM). Integrin receptors not only play a key role in HSC adhesion within the BM niche but also transfer regulatory signals from the microenvironment to HSCs. Periostin (Postn or osteoblast specific factor-1; OSF-1) is expressed in osteoblasts in addition to many other tissues, and acts as a ligand for Integrin-αvβ3 (ITGAV-B3). We identified POSTN as an important regulator of the cell cycle in adult murine HSCs. POSTN inhibited culture induced proliferation of HSCs thereby decreasing the total number of cells following 2-5 day culture of primitive HSCs, identified as CD150+CD48-Lin-Sca-1+c-kit+ (CD150 KLS) cells with SCF and TPO, while increasing the proportion of long-term (LT-) HSCs. Culture for 5 days with POSTN decreased the short-term (ST-) engraftment of progeny of 200 CD150 KLS cells, while significantly increasing LT- engraftment of the donor derived cells. A significant fraction of CD150 KLS cells expressed ITGAV as well as ITGB3. POSTN did not affect proliferation of HSCs in vitro following blocking of ITGAV with neutralizing antibodies. Among the important cell cycle regulators, we found an increase in p27kip1 expression in HSCs. Preliminary studies on possible signaling mechanisms involved, showed that POSTN inhibits Akt phosphorylation, known to mediate inhibition of both expression and activation of p27Kip1. Intravenous infusion of recombinant POSTN protein significantly decreased proliferation of hematopoietic progenitors as shown by Brdu incorporation and Hoechst/Pyronin staining. Interestingly, POSTN infusion also led to an increase in the number of KLS as well as CD150 KLS cells in the BM. Studies on characterization of the hematopoietic system of Postn-/- mice are underway. To further determine the role of ITGAV in HSCs, we used blocking antibodies against ITGAV and performed homing and engraftment studies. No effect on either homing potential or engraftment of ST- and LT- engraftment was seen. However, the competitive repopulation of ITGAV- CD150 KLS cells was significantly lower that that of ITGAV+ CD150 KLS cells (isolated using non-blocking antibodies). Therefore, our studies confirm the importance of ITGAV expression on primitive HSCs as well as presents POSTN as an important cell cycle regulator in the hematopoietic system.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.