Abstract
Ribosomes are RNA-protein machines that translate the genetic information encoded by the mRNA template in all living cells. Recent high-resolution structures of the ribosome have revolutionized our understanding of protein translation. However, the mechanisms of ribosome assembly and the surveillance mechanisms that monitor this process and couple it to growth are poorly understood. Causative mutations and deletions of genes involved in ribosome biogenesis define an emerging group of disorders known as the ribosomopathies. Recent work from my laboratory strongly supports the hypothesis that Shwachman-Diamond syndrome (SDS) is a ribosomopathy caused by defective maturation of the large ribosomal subunit. Elucidation of the specific function of the SBDS protein that is deficient in SDS is revealing unexpected new insights that extend our understanding of the mechanisms underlying the late cytoplasmic steps of ribosome assembly and the quality control surveillance pathways that monitor 60S maturation. Genetic dissection of this pathway may inform novel therapeutic strategies for SDS.
1. Wong C.C., Traynor D., Basse N., Kay R.R., Warren A.J. Defective ribosome assembly in Shwachman-Diamond syndrome. Plenary Paper, Blood. 2011 Oct 20;118(16):4305-12.
2. Finch A.J., Hilcenko C., Basse N., Drynan L.F., Goyenechea B., Menne T.F., González Fernández Á., Simpson P., D’Santos C.S., Arends M.J., Donadieu J., Bellanné-Chantelot C., Costanzo M., Boone C., McKenzie A.N., Freund S.M., Warren A.J. Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome. Genes and Development (2011) 25: 917-929.
3. Menne T.M., Goyenechea B., Sánchez-Puig N., Wong C.C., Tonkin L.M., Ancliff P., Brost R.L., Costanzo M., Boone C. and Warren A.J. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nature Genetics (2007) 39: 486-95.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.