Abstract
Background:
Chronic Immune thrombocytopenia (ITP) is characterized by low platelet counts, resulting from increased platelet destruction and inadequate platelet production. Romiplostim is a 59 kDa peptibody which binds to and activates the thrombopoietin (TPO) receptor on platelet precursors in the bone marrow, and increases platelet counts. This analysis integrates the pharmacokinetic (PK) and pharmacodynamic (PD) properties of romiplostim in animals, healthy volunteers and patients with ITP, and describes its intricate PK-PD inter-relationship.
Methods and Results:
In healthy subjects, over a wide range of doses examined, the PK and PD (platelet response) of romiplostim were dependent on both the dose administered and the baseline platelet counts. Following SC administration, platelet counts increased in a dose-dependent fashion after 4 to 9 days, peaking at 12 to 16 days (Wang Clin Pharmacol Ther. 2004;76:628-38). When romiplostim binds to the TPO receptor on megakaryocytes and platelets, the peptibody-receptor complex is internalized and degraded inside the cells. Therefore, as platelet counts increase, a higher number of free receptors are available to clear romiplostim (Wang AAPS J. 2010;12:729-40). Results from rodent studies suggest that as the dose increases, the TPO receptors become saturated and the contribution of the kidney to clearance increases. Additionally, proteolysis plays a role in the clearance of romiplostim; however, the cytochrome P450 enzymes are not involved in protein catabolism (Wang Pharm Res. 2011;28:1931-8), hence there are no known drug-drug interactions or dietary restrictions (Nplate Prescribing Information 2014).
Following SC administration, serum concentrations of romiplostim were markedly lower, however, platelet response was similar after the same dose of intravenous (IV) and SC administration (Wang Clin Pharmacol Ther. 2004;76:628-38). This suggests that the PD response is driven by the length of time that the romiplostim concentrations remained above a threshold rather than by the magnitude of concentrations achieved. This effect was verified in a mechanistic PK-PD modeling study in animals (Krzyzanski Pharm Res. 2013;30:655-69). In patients with ITP receiving SC romiplostim at a dose of 1 mcg/kg, the peak platelet response was achieved at 18 days (range 8 to 43; Bussel N Engl J Med. 2006;355:1672-81). Pharmacodynamic model analysis showed that compared with healthy subjects, patients with ITP had a shorter platelet life span and a decreased rate of production of progenitor cells, but no major difference in the time to maturation of megakaryocytes. The PD response in this modeling analysis was not notably affected by age, body weight, sex, and race (Perez-Ruixo J Clin Pharmacol. 2012;52:1540-51). The frequency of once-weekly dosing was selected because once every 2 weeks dosing was determined to be inadequate to achieve and maintain platelet counts in the therapeutic range (Bussel N Engl J Med. 2006;355:1672-81). A mechanistic PK-PD model based on data from the healthy subjects further suggested that weekly dosing resulted in a sustained platelet response while dosing less frequently resulted in high fluctuation of platelet counts (Wang AAPS J. 2010;12:729-40). Large inter- and intra-individual variability in the PD response was observed at a given dose; therefore, dose adjustments should be made based on a patient's platelet counts, using a titrated dosing scheme to prevent having platelet counts over 400 x 109/L (Perez-Ruixo J Clin Pharmacol. 2012;52:1540-51).
Conclusion:
Romiplostim is a peptibody that binds and activates the TPO receptor, and consequently increases platelet production in individuals with chronic ITP. The peptibody-receptor complex is internalized and degraded inside the cells, without involvement of the liver. Romiplostim's PD response is driven by the length of time that its concentrations remained above a threshold rather than by the magnitude of concentrations achieved. Moreover, weekly dosing has demonstrated a sustained platelet response while less frequent dosing resulted in fluctuating platelet counts.
Arkam:Amgen Inc.: Employment, Equity Ownership. Off Label Use: Romiplostim is a thrombopoietin receptor agonist indicated for the treatment of thrombocytopenia in patients with chronic immune thrombocytopenia (ITP) who have had an insufficient response to corticosteroids, immunoglobulins, or splenectomy. This abstract also describes PK data from healthy volunteers.. Doshi:Amgen Inc.: Employment, Equity Ownership. Yang:Amgen Inc.: Employment, Equity Ownership.
Author notes
Asterisk with author names denotes non-ASH members.