Abstract
High dose melphalan is commonly used in patients with multiple myeloma (MM). Resistance to melphalan has been linked to the ability to repair DNA damage. To test whether DNA repair inhibitors overcome resistance to melphalan and and also have a direct anti-MM effect, we tested MM cell lines RPMI8226 and U266 in-vitro and in-vivo, using a NOD/SCID/ gamma null (NSG) xenograft model.
RPMI8226 and U266 cells were initially treated in-vitro with the PARP inhibitor ABT-888. Using a proliferative assay, myeloma cells appeared sensitive to ABT-888 with low GI50 values (8.7μM for RPMI8226 cells, 49μM for U266 cells) and increased γH2AX foci, which persisted at 24 hours after treatment. This was confirmed in methycellulose colony assay where ABT-888 treatment reduced RPMI8226 colonies by 35% (p=0.002). Next we showed synergistic cytotoxicity between ABT-888 and melphalan. In both RPMI8226 and U266 cells strong synergy was displayed with a combination index (CI) less than 1 in proliferative assays (CI 0.5 and 0.3 at 50% proliferation respectively). Combination ABT-888 and melphalan treated cells underwent accelerated senescence compared to cells treated by melphalan alone (27% versus 51% βGal+ staining at 24 hours, p=0.02). This was confirmed by upregulation of senescence related genes p16 (1.6 fold increase) and p21 (1.5 fold increase). We did not find significant difference in apoptosis by Annexin V/ PI staining. Given that increased non-homologous end joining (NHEJ) activity has been shown to lead to resistance to melphalan, we tested whether an inhibitor of NHEJ could be synergistic with PARP inhibition and melphalan. Treatment with the DNA-PK inhibitor NU7026 at 10μM in addition to ABT-888 at 4μM resulted in 46% reduction in proliferation in RPMI8226 cells and 52% in U266 cells. When used in combination with melphalan chemotherapy, the dual DNA repair inhibitor therapy showed marked synergy in RPMI8226 cells with a combination index of 0.39. Finally we tested the ability of the combination of ABT-888 and melphalan to treat myeloma in-vivo. NSG mice were injected via tail vein with 5x106 RPMI8226 cells. Control (untreated) mice subsequently developed myeloma infiltrating the marrow, spleen and axial skeleton, with hind limb paralysis occurring at a median of 42 days. Treated mice received intraperitoneal injections of ABT-888 (3 times a week), or melphalan (weekly) or a combination of both agents starting on day 28 post-injection of MM cells for a total of 3 weeks. Using ABT-888, melphalan and a combination of both agents, median survival of mice was progressively prolonged (44 vs. 67 vs. 107 days, respectively) (p=0.02).
Here we show that PARP and DNA-PK inhibition synergizes with melphalan in myeloma cells lines, providing a rationale for the addition of these agents to conditioning chemotherapy. In addition, we also show a direct anti-myeloma activity of these agents without the use of alkylator chemotherapy.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.