Abstract
The hemoglobin (hgb) from a patient with Hgb M disease was resolved into two components by starch block electrophoresis (at pH 7.0-7.2) of the oxidized hemolyzate. One component was identified electrophoretically and spectroscopically as Hgb A, and the other as Hgb M. Methods for the determination of the relative concentration of Hgb M were given. In the patient reported, Hgb M was found to comprise approximately 30 per cent of the total hgb.
Spectroscopic studies of electrophoreticably isolated Hgb M demonstrated that both the methgb and the cyanmethgb form were abnormal in their spectral curves. The reactions of the methgb form with low and high concentrations of cyanide were found to differ. The nature of the spectral changes were such as to indicate that some of the heme groups of the methgb form react abnormally and others apparently normally. The electrophoretic behavior of the patient’s hemolyzate after treatment with various combinations of cyanide and ferricyanide was consistent with this hypothesis. The differing reactivity of the heme groups was explained in the light of the biochemical genetics of the abnormal hemoglobins.