Chromosomal translocations are genetic rearrangements where a chromosomal segment is transferred to a non-homologous chromosome which give rise to novel chimeras. Chromosomal rearrangements play a significant role in the development of acute leukemias (acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML)). Chromosomal translocation events occurring at 11q23 involving the KMT2A or Mixed-Lineage Leukemia (MLL) gene (n=102) can be diagnosed in about 5-10% of all acute leukemia patients (Marschalek Ann Lab Med 2016), especially prevalent in infant acute leukemias (up to 70% of cases). Different chromosomal translocation partner genes (such as AF4, AF6, AF9orENL and ELL) account for the majority of leukemia cases and have their genomic breakpoints within a major breakpoint cluster region (BCR intron 9-11; Meyer et. al. Leukemia 2018). Some rearrangements are specifically associated with particular disease phenotype e.g. the majority of ALL patients (~ 90%) are mainly caused by the following gene fusions, MLL-AF4, MLL-AF9, MLL-ENL. We are interested in a rare but yet drastic chromosomal translocation t(6;11)(q27;q23) which fuses KMT2A/MLL to Afadin (AFDN/AF6) gene. This chromosomal rearrangement has a very poor prognosis (survival-rate is ~10%) and is predominantly diagnosed in patients with high-risk AML.
In this project, we investigate the molecular consequences of two different MLL-AF6 fusions and their corresponding reciprocal AF6-MLL fusions. MLL-AF6 fusions are mainly occurring within MLL intron 9 to 11 and are associated with an AML disease phenotype, while the same fusion occurring within the minor breakpoints region in MLL intron 21 until exon (ex) 24 are mainly diagnosed with T-ALL (T-cell acute lymphoblastic leukemia) disease phenotype. The molecular mechanism that determines the resulting disease phenotype is yet unknown. Therefore, we cloned all of these t(6;11) fusion proteins in order to investigate the functional consequences of the two different breakpoints (MLLex1-9::AF6ex2-30, AF6ex1::MLLex10-37; MLLex1-21::AF6ex2-30, AF6ex1::MLLex22-37). All 4 fusion genes were introduced into our inducible Sleeping Beauty system (Ivics et. al. Mobile DNA 2010; Kowarz et. al. Biotechnol J. 2015) and stably transfected reporter cell lines. Basically, these 4 fusion proteins differ only in the presence or absence of their Plant homeodomain 1-3/Bromodomain (PHD1-3/BD) domain (see Figure 1). The PHD domain regulates the epigenetic and transcriptional regulatory functions of wildtype MLL. Subsequently, we analyzed gene expression differences by the MACE-Seq (Massive Analyses of cDNA Ends). MACE data revealed fundamental differences in gene expression profiles when analyzing the two different sets of t(6;11) fusion genes. The resulting profiles have similarities to either AML or T-ALL and might give a rational explanation for the different lineages in these t(6;11) patients.
Altogether, these results notably indicate that our study will provide a novel insight into this type of high-risk leukemia and subsequently will be useful for developing of novel and appropriate therapeutic strategies against acute leukemia.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.