Abstract
In rabbit platelets, the metabolically active ATP pool equilibrates with the releasable ATP pool within 1 day. The studies showing this have now been extended to human platelets. Human platelets labeled with 14C-adenosine or 14C-adenine were incubated for up to 10 hr in vitro at 37 degrees C. After 10 hr, about 12% of the total platelet 14C-ATP and 14C-ADP had become releasable with thrombin (4.2 units/ml). Lysis of platelets did not occur, since less than 1% of the platelet-bound 51Cr from platelets labeled with this radioisotope appeared in the ambient fluid upon thrombin treatment. The 14C-ATP/14C-ADP ratio of the released adenine nucleotides (7.6) was similar to the 14C-ATP/14C-ADP ratio of the nonreleasable adenine nucleotides (7.1) 2 hr after the labeling with 14C-adenosine. However, upon prolonged incubation (10 hr) in vitro, the 14C-ATP/14C-ADP ratio of the releasable adenine nucleotides decreased to 2.7. The adenylate energy charge and the 14C- ATP/14C-ADP ratio of the metabolic adenine nucleotide pool did not change significantly during the time of observation. The 14C-ATP content of the platelets decreased by less than 1% hr of incubation at 37 degrees C. These observations are interpreted to mean that the 14C is transferred from the metabolically active, nonreleasable adenine nucleotide pool of human platelets into the releasable adenine nucleotide pool as ATP and is partially hydrolyzed there to yield ADP. The transfer of ATP across the storage organelle membrane of platelets may be similar to transport processes in the chromaffin cells of the adrenal medulla and may represent a general phenomenon in cells that possess storage organelles containing adenine nucleotides.