Abstract
Congenital nonspherocytic hemolytic anemia in an adult male of Scandinavian ancestry was associated with virtual absence of G6PD activity in red cells. Characterization of G6PD purified from leukocytes using standard WHO techniques revealed diminished electrophoretic mobility, marked lability on heating at 46 degrees C, normal pH optimum and utilization of alternate substrates (2-deoxy G6P, D-amino NADP), elevated Km NADP, and striking susceptibility to NADPH inhibition. The variant G6PD, which appears to be unique, has been designated G6PD San Francisco. An unusual feature of the variant enzyme, susceptibility to inactivation by brief periods of dialysis, could be prevented by addition of 200 microM NADP to the dialysis solution. In red cells, where G6PD activity was essentially absent, regeneration of reduced glutathione was totally curtailed in vitro, while in leukocytes, where residual G6PD activity was approximately 60% of normal, hexose monophosphate shunt activity, oxygen consumption during phagocytosis, and bacterial killing were unimpaired. Thus, instability of the variant enzyme rather than its unfavorable kinetics appeared to be an important determinant of abnormal cell function.