Abstract
In this study we have followed the 32P-labeling of actin-binding protein as a function of platelet activation. Utilizing polyacrylamide- sodium dodecyl sulfate gel electrophoresis to resolve total platelet protein samples, we found 2--3-fold labeling increases in actin-binding protein 30--60 sec after thrombin stimulation. Somewhat larger increases were observed for 40,000 and 20,000 apparent molecular weight peptides. The actin-binding protein was identified on the gels by coelectrophoresis with purified actin-binding protein, its presence in cytoskeletal cores prepared by detergent extraction of activated 32P- labeled platelets, and by direct immunoprecipitation with antibodies against guinea pig vas deferens filamin (actin-binding protein). In addition, these cytoskeletal cores indicated that the 32P-labeled actin- binding protein was closely associated with the activated platelet's cytoskeleton. Following the 32P-labeling of actin-binding protein over an 8-min time course revealed that in aggregating platelet samples rapid dephosphorylation to almost initial levels occurred between 3 and 5 min. A similar curve was obtained for the 20,000 apparent molecular weight peptide. However, rapid dephosphorylation was not observed if platelet aggregation was prevented by chelating external calcium or by using thrombasthenic platelets lacking the aggregation response. Thus, cell-cell contact would seem to be crucial in initiating the rapid dephosphorylation response.